| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- import torch
- import torch.nn as nn
- import numpy as np
- from utils.misc import multiclass_nms
- from .yolov2_backbone import build_backbone
- from .yolov2_neck import build_neck
- from .yolov2_head import build_head
- # YOLOv2
- class YOLOv2(nn.Module):
- def __init__(self,
- cfg,
- device,
- num_classes=20,
- conf_thresh=0.01,
- nms_thresh=0.5,
- topk=100,
- trainable=False,
- deploy=False,
- no_multi_labels=False,
- nms_class_agnostic=False):
- super(YOLOv2, self).__init__()
- # ------------------- Basic parameters -------------------
- self.cfg = cfg # 模型配置文件
- self.device = device # cuda或者是cpu
- self.num_classes = num_classes # 类别的数量
- self.trainable = trainable # 训练的标记
- self.conf_thresh = conf_thresh # 得分阈值
- self.nms_thresh = nms_thresh # NMS阈值
- self.topk_candidates = topk # topk
- self.stride = 32 # 网络的最大步长
- self.deploy = deploy
- self.no_multi_labels = no_multi_labels
- self.nms_class_agnostic = nms_class_agnostic
- # ------------------- Anchor box -------------------
- self.anchor_size = torch.as_tensor(cfg['anchor_size']).float().view(-1, 2) # [A, 2]
- self.num_anchors = self.anchor_size.shape[0]
-
- # ------------------- Network Structure -------------------
- ## 主干网络
- self.backbone, feat_dim = build_backbone(
- cfg['backbone'], trainable&cfg['pretrained'])
- ## 颈部网络
- self.neck = build_neck(cfg, feat_dim, out_dim=512)
- head_dim = self.neck.out_dim
- ## 检测头
- self.head = build_head(cfg, head_dim, head_dim, num_classes)
- ## 预测层
- self.obj_pred = nn.Conv2d(head_dim, 1*self.num_anchors, kernel_size=1)
- self.cls_pred = nn.Conv2d(head_dim, num_classes*self.num_anchors, kernel_size=1)
- self.reg_pred = nn.Conv2d(head_dim, 4*self.num_anchors, kernel_size=1)
-
- if self.trainable:
- self.init_bias()
- def init_bias(self):
- # init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- nn.init.constant_(self.obj_pred.bias, bias_value)
- nn.init.constant_(self.cls_pred.bias, bias_value)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- fmp_h, fmp_w = fmp_size
- # generate grid cells
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- # [HW, 2] -> [HW, A, 2] -> [M, 2]
- anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
- anchor_xy = anchor_xy.view(-1, 2).to(self.device)
- # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2]
- anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
- anchor_wh = anchor_wh.view(-1, 2).to(self.device)
- anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
- return anchors
-
- def decode_boxes(self, anchors, reg_pred):
- """
- 将txtytwth转换为常用的x1y1x2y2形式。
- """
- # 计算预测边界框的中心点坐标和宽高
- pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
- pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
- # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
- pred_x1y1 = pred_ctr - pred_wh * 0.5
- pred_x2y2 = pred_ctr + pred_wh * 0.5
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
- def postprocess(self, obj_pred, cls_pred, reg_pred, anchors):
- """
- Input:
- obj_pred: (Tensor) [H*W*A, 1]
- cls_pred: (Tensor) [H*W*A, C]
- reg_pred: (Tensor) [H*W*A, 4]
- """
- if self.no_multi_labels:
- # [M,]
- scores, labels = torch.max(torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()), dim=1)
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, reg_pred.size(0))
- # topk candidates
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- labels = labels[topk_idxs]
- bboxes = self.decode_boxes(anchors[topk_idxs], reg_pred[topk_idxs])
- else:
- # (H x W x A x C,)
- scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()).flatten()
- # Keep top k top scoring indices only.
- num_topk = min(self.topk_candidates, reg_pred.size(0))
- # torch.sort is actually faster than .topk (at least on GPUs)
- predicted_prob, topk_idxs = scores.sort(descending=True)
- topk_scores = predicted_prob[:num_topk]
- topk_idxs = topk_idxs[:num_topk]
- # filter out the proposals with low confidence score
- keep_idxs = topk_scores > self.conf_thresh
- scores = topk_scores[keep_idxs]
- topk_idxs = topk_idxs[keep_idxs]
- anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
- labels = topk_idxs % self.num_classes
- reg_pred = reg_pred[anchor_idxs]
- anchors = anchors[anchor_idxs]
- # 解算边界框, 并归一化边界框: [H*W*A, 4]
- bboxes = self.decode_boxes(anchors, reg_pred)
- # to cpu & numpy
- scores = scores.cpu().numpy()
- labels = labels.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
- return bboxes, scores, labels
- @torch.no_grad()
- def inference(self, x):
- bs = x.shape[0]
- # 主干网络
- feat = self.backbone(x)
- # 颈部网络
- feat = self.neck(feat)
- # 检测头
- cls_feat, reg_feat = self.head(feat)
- # 预测层
- obj_pred = self.obj_pred(reg_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- fmp_size = obj_pred.shape[-2:]
- # anchors: [M, 2]
- anchors = self.generate_anchors(fmp_size)
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
- # 测试时,笔者默认batch是1,
- # 因此,我们不需要用batch这个维度,用[0]将其取走。
- obj_pred = obj_pred[0] # [H*W*A, 1]
- cls_pred = cls_pred[0] # [H*W*A, NC]
- reg_pred = reg_pred[0] # [H*W*A, 4]
- if self.deploy:
- scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())
- bboxes = self.decode_boxes(anchors, reg_pred)
- # [n_anchors_all, 4 + C]
- outputs = torch.cat([bboxes, scores], dim=-1)
- else:
- # post process
- bboxes, scores, labels = self.postprocess(
- obj_pred, cls_pred, reg_pred, anchors)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
- return outputs
- def forward(self, x):
- if not self.trainable:
- return self.inference(x)
- else:
- bs = x.shape[0]
- # 主干网络
- feat = self.backbone(x)
- # 颈部网络
- feat = self.neck(feat)
- # 检测头
- cls_feat, reg_feat = self.head(feat)
- # 预测层
- obj_pred = self.obj_pred(reg_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- fmp_size = obj_pred.shape[-2:]
- # anchors: [M, 2]
- anchors = self.generate_anchors(fmp_size)
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
- # decode bbox
- box_pred = self.decode_boxes(anchors, reg_pred)
- # 网络输出
- outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
- "pred_cls": cls_pred, # (Tensor) [B, M, C]
- "pred_box": box_pred, # (Tensor) [B, M, 4]
- "stride": self.stride, # (Int)
- "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
- }
- return outputs
-
|