yolov2.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. import torch
  2. import torch.nn as nn
  3. import numpy as np
  4. from utils.misc import multiclass_nms
  5. from .yolov2_backbone import build_backbone
  6. from .yolov2_neck import build_neck
  7. from .yolov2_head import build_head
  8. # YOLOv2
  9. class YOLOv2(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. nms_thresh=0.5,
  16. topk=100,
  17. trainable=False,
  18. deploy=False,
  19. no_multi_labels=False,
  20. nms_class_agnostic=False):
  21. super(YOLOv2, self).__init__()
  22. # ------------------- Basic parameters -------------------
  23. self.cfg = cfg # 模型配置文件
  24. self.device = device # cuda或者是cpu
  25. self.num_classes = num_classes # 类别的数量
  26. self.trainable = trainable # 训练的标记
  27. self.conf_thresh = conf_thresh # 得分阈值
  28. self.nms_thresh = nms_thresh # NMS阈值
  29. self.topk_candidates = topk # topk
  30. self.stride = 32 # 网络的最大步长
  31. self.deploy = deploy
  32. self.no_multi_labels = no_multi_labels
  33. self.nms_class_agnostic = nms_class_agnostic
  34. # ------------------- Anchor box -------------------
  35. self.anchor_size = torch.as_tensor(cfg['anchor_size']).float().view(-1, 2) # [A, 2]
  36. self.num_anchors = self.anchor_size.shape[0]
  37. # ------------------- Network Structure -------------------
  38. ## 主干网络
  39. self.backbone, feat_dim = build_backbone(
  40. cfg['backbone'], trainable&cfg['pretrained'])
  41. ## 颈部网络
  42. self.neck = build_neck(cfg, feat_dim, out_dim=512)
  43. head_dim = self.neck.out_dim
  44. ## 检测头
  45. self.head = build_head(cfg, head_dim, head_dim, num_classes)
  46. ## 预测层
  47. self.obj_pred = nn.Conv2d(head_dim, 1*self.num_anchors, kernel_size=1)
  48. self.cls_pred = nn.Conv2d(head_dim, num_classes*self.num_anchors, kernel_size=1)
  49. self.reg_pred = nn.Conv2d(head_dim, 4*self.num_anchors, kernel_size=1)
  50. if self.trainable:
  51. self.init_bias()
  52. def init_bias(self):
  53. # init bias
  54. init_prob = 0.01
  55. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  56. nn.init.constant_(self.obj_pred.bias, bias_value)
  57. nn.init.constant_(self.cls_pred.bias, bias_value)
  58. def generate_anchors(self, fmp_size):
  59. """
  60. fmp_size: (List) [H, W]
  61. """
  62. fmp_h, fmp_w = fmp_size
  63. # generate grid cells
  64. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  65. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  66. # [HW, 2] -> [HW, A, 2] -> [M, 2]
  67. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  68. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  69. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2]
  70. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  71. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  72. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  73. return anchors
  74. def decode_boxes(self, anchors, reg_pred):
  75. """
  76. 将txtytwth转换为常用的x1y1x2y2形式。
  77. """
  78. # 计算预测边界框的中心点坐标和宽高
  79. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  80. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  81. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  82. pred_x1y1 = pred_ctr - pred_wh * 0.5
  83. pred_x2y2 = pred_ctr + pred_wh * 0.5
  84. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  85. return pred_box
  86. def postprocess(self, obj_pred, cls_pred, reg_pred, anchors):
  87. """
  88. Input:
  89. obj_pred: (Tensor) [H*W*A, 1]
  90. cls_pred: (Tensor) [H*W*A, C]
  91. reg_pred: (Tensor) [H*W*A, 4]
  92. """
  93. if self.no_multi_labels:
  94. # [M,]
  95. scores, labels = torch.max(torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()), dim=1)
  96. # Keep top k top scoring indices only.
  97. num_topk = min(self.topk_candidates, reg_pred.size(0))
  98. # topk candidates
  99. predicted_prob, topk_idxs = scores.sort(descending=True)
  100. topk_scores = predicted_prob[:num_topk]
  101. topk_idxs = topk_idxs[:num_topk]
  102. # filter out the proposals with low confidence score
  103. keep_idxs = topk_scores > self.conf_thresh
  104. scores = topk_scores[keep_idxs]
  105. topk_idxs = topk_idxs[keep_idxs]
  106. labels = labels[topk_idxs]
  107. bboxes = self.decode_boxes(anchors[topk_idxs], reg_pred[topk_idxs])
  108. else:
  109. # (H x W x A x C,)
  110. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()).flatten()
  111. # Keep top k top scoring indices only.
  112. num_topk = min(self.topk_candidates, reg_pred.size(0))
  113. # torch.sort is actually faster than .topk (at least on GPUs)
  114. predicted_prob, topk_idxs = scores.sort(descending=True)
  115. topk_scores = predicted_prob[:num_topk]
  116. topk_idxs = topk_idxs[:num_topk]
  117. # filter out the proposals with low confidence score
  118. keep_idxs = topk_scores > self.conf_thresh
  119. scores = topk_scores[keep_idxs]
  120. topk_idxs = topk_idxs[keep_idxs]
  121. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  122. labels = topk_idxs % self.num_classes
  123. reg_pred = reg_pred[anchor_idxs]
  124. anchors = anchors[anchor_idxs]
  125. # 解算边界框, 并归一化边界框: [H*W*A, 4]
  126. bboxes = self.decode_boxes(anchors, reg_pred)
  127. # to cpu & numpy
  128. scores = scores.cpu().numpy()
  129. labels = labels.cpu().numpy()
  130. bboxes = bboxes.cpu().numpy()
  131. # nms
  132. scores, labels, bboxes = multiclass_nms(
  133. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  134. return bboxes, scores, labels
  135. @torch.no_grad()
  136. def inference(self, x):
  137. bs = x.shape[0]
  138. # 主干网络
  139. feat = self.backbone(x)
  140. # 颈部网络
  141. feat = self.neck(feat)
  142. # 检测头
  143. cls_feat, reg_feat = self.head(feat)
  144. # 预测层
  145. obj_pred = self.obj_pred(reg_feat)
  146. cls_pred = self.cls_pred(cls_feat)
  147. reg_pred = self.reg_pred(reg_feat)
  148. fmp_size = obj_pred.shape[-2:]
  149. # anchors: [M, 2]
  150. anchors = self.generate_anchors(fmp_size)
  151. # 对 pred 的size做一些view调整,便于后续的处理
  152. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  153. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  154. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  155. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  156. # 测试时,笔者默认batch是1,
  157. # 因此,我们不需要用batch这个维度,用[0]将其取走。
  158. obj_pred = obj_pred[0] # [H*W*A, 1]
  159. cls_pred = cls_pred[0] # [H*W*A, NC]
  160. reg_pred = reg_pred[0] # [H*W*A, 4]
  161. if self.deploy:
  162. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())
  163. bboxes = self.decode_boxes(anchors, reg_pred)
  164. # [n_anchors_all, 4 + C]
  165. outputs = torch.cat([bboxes, scores], dim=-1)
  166. else:
  167. # post process
  168. bboxes, scores, labels = self.postprocess(
  169. obj_pred, cls_pred, reg_pred, anchors)
  170. outputs = {
  171. "scores": scores,
  172. "labels": labels,
  173. "bboxes": bboxes
  174. }
  175. return outputs
  176. def forward(self, x):
  177. if not self.trainable:
  178. return self.inference(x)
  179. else:
  180. bs = x.shape[0]
  181. # 主干网络
  182. feat = self.backbone(x)
  183. # 颈部网络
  184. feat = self.neck(feat)
  185. # 检测头
  186. cls_feat, reg_feat = self.head(feat)
  187. # 预测层
  188. obj_pred = self.obj_pred(reg_feat)
  189. cls_pred = self.cls_pred(cls_feat)
  190. reg_pred = self.reg_pred(reg_feat)
  191. fmp_size = obj_pred.shape[-2:]
  192. # anchors: [M, 2]
  193. anchors = self.generate_anchors(fmp_size)
  194. # 对 pred 的size做一些view调整,便于后续的处理
  195. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  196. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  197. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  198. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  199. # decode bbox
  200. box_pred = self.decode_boxes(anchors, reg_pred)
  201. # 网络输出
  202. outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
  203. "pred_cls": cls_pred, # (Tensor) [B, M, C]
  204. "pred_box": box_pred, # (Tensor) [B, M, 4]
  205. "stride": self.stride, # (Int)
  206. "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
  207. }
  208. return outputs