| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- import torch
- import torch.nn as nn
- import numpy as np
- from utils.misc import multiclass_nms
- from .yolov1_backbone import build_backbone
- from .yolov1_neck import build_neck
- from .yolov1_head import build_head
- # YOLOv1
- class YOLOv1(nn.Module):
- def __init__(self,
- cfg,
- device,
- img_size=None,
- num_classes=20,
- conf_thresh=0.01,
- nms_thresh=0.5,
- trainable=False,
- deploy=False,
- nms_class_agnostic :bool = False):
- super(YOLOv1, self).__init__()
- # ------------------------- 基础参数 ---------------------------
- self.cfg = cfg # 模型配置文件
- self.img_size = img_size # 输入图像大小
- self.device = device # cuda或者是cpu
- self.num_classes = num_classes # 类别的数量
- self.trainable = trainable # 训练的标记
- self.conf_thresh = conf_thresh # 得分阈值
- self.nms_thresh = nms_thresh # NMS阈值
- self.stride = 32 # 网络的最大步长
- self.deploy = deploy
- self.nms_class_agnostic = nms_class_agnostic
-
- # ----------------------- 模型网络结构 -------------------------
- ## 主干网络
- self.backbone, feat_dim = build_backbone(
- cfg['backbone'], trainable&cfg['pretrained'])
- ## 颈部网络
- self.neck = build_neck(cfg, feat_dim, out_dim=512)
- head_dim = self.neck.out_dim
- ## 检测头
- self.head = build_head(cfg, head_dim, head_dim, num_classes)
- ## 预测层
- self.obj_pred = nn.Conv2d(head_dim, 1, kernel_size=1)
- self.cls_pred = nn.Conv2d(head_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(head_dim, 4, kernel_size=1)
-
- def create_grid(self, fmp_size):
- """
- 用于生成G矩阵,其中每个元素都是特征图上的像素坐标。
- """
- # 特征图的宽和高
- ws, hs = fmp_size
- # 生成网格的x坐标和y坐标
- grid_y, grid_x = torch.meshgrid([torch.arange(hs), torch.arange(ws)])
- # 将xy两部分的坐标拼起来:[H, W, 2]
- grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()
- # [H, W, 2] -> [HW, 2] -> [HW, 2]
- grid_xy = grid_xy.view(-1, 2).to(self.device)
-
- return grid_xy
- def decode_boxes(self, pred, fmp_size):
- """
- 将txtytwth转换为常用的x1y1x2y2形式。
- """
- # 生成网格坐标矩阵
- grid_cell = self.create_grid(fmp_size)
- # 计算预测边界框的中心点坐标和宽高
- pred_ctr = (torch.sigmoid(pred[..., :2]) + grid_cell) * self.stride
- pred_wh = torch.exp(pred[..., 2:]) * self.stride
- # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
- pred_x1y1 = pred_ctr - pred_wh * 0.5
- pred_x2y2 = pred_ctr + pred_wh * 0.5
- pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- return pred_box
- def postprocess(self, bboxes, scores):
- """
- Input:
- bboxes: [HxW, 4]
- scores: [HxW, num_classes]
- Output:
- bboxes: [N, 4]
- score: [N,]
- labels: [N,]
- """
- labels = np.argmax(scores, axis=1)
- scores = scores[(np.arange(scores.shape[0]), labels)]
-
- # threshold
- keep = np.where(scores >= self.conf_thresh)
- bboxes = bboxes[keep]
- scores = scores[keep]
- labels = labels[keep]
- # nms
- scores, labels, bboxes = multiclass_nms(
- scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
- return bboxes, scores, labels
- @torch.no_grad()
- def inference(self, x):
- # 主干网络
- feat = self.backbone(x)
- # 颈部网络
- feat = self.neck(feat)
- # 检测头
- cls_feat, reg_feat = self.head(feat)
- # 预测层
- obj_pred = self.obj_pred(cls_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- fmp_size = obj_pred.shape[-2:]
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- # 测试时,笔者默认batch是1,
- # 因此,我们不需要用batch这个维度,用[0]将其取走。
- obj_pred = obj_pred[0] # [H*W, 1]
- cls_pred = cls_pred[0] # [H*W, NC]
- reg_pred = reg_pred[0] # [H*W, 4]
- # 每个边界框的得分
- scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())
-
- # 解算边界框, 并归一化边界框: [H*W, 4]
- bboxes = self.decode_boxes(reg_pred, fmp_size)
-
- if self.deploy:
- # [n_anchors_all, 4 + C]
- outputs = torch.cat([bboxes, scores], dim=-1)
- else:
- # 将预测放在cpu处理上,以便进行后处理
- scores = scores.cpu().numpy()
- bboxes = bboxes.cpu().numpy()
-
- # 后处理
- bboxes, scores, labels = self.postprocess(bboxes, scores)
- outputs = {
- "scores": scores,
- "labels": labels,
- "bboxes": bboxes
- }
- return outputs
- def forward(self, x):
- if not self.trainable:
- return self.inference(x)
- else:
- # 主干网络
- feat = self.backbone(x)
- # 颈部网络
- feat = self.neck(feat)
- # 检测头
- cls_feat, reg_feat = self.head(feat)
- # 预测层
- obj_pred = self.obj_pred(cls_feat)
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- fmp_size = obj_pred.shape[-2:]
- # 对 pred 的size做一些view调整,便于后续的处理
- # [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]
- obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)
- # decode bbox
- box_pred = self.decode_boxes(reg_pred, fmp_size)
- # 网络输出
- outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
- "pred_cls": cls_pred, # (Tensor) [B, M, C]
- "pred_box": box_pred, # (Tensor) [B, M, 4]
- "stride": self.stride, # (Int)
- "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
- }
- return outputs
-
|