| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- import math
- import torch
- import torch.nn as nn
- def build_det_pred(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
- pred_layers = MDetPDLayer(cls_dim = cls_dim,
- reg_dim = reg_dim,
- strides = strides,
- num_classes = num_classes,
- num_coords = num_coords,
- num_levels = num_levels)
- return pred_layers
- def build_seg_pred():
- return MaskPDLayer()
- def build_pose_pred():
- return PosePDLayer()
- # ---------------------------- Detection predictor ----------------------------
- ## Single-level Detection Prediction Layer
- class SDetPDLayer(nn.Module):
- def __init__(self,
- cls_dim :int = 256,
- reg_dim :int = 256,
- stride :int = 32,
- num_classes :int = 80,
- num_coords :int = 4):
- super().__init__()
- # --------- Basic Parameters ----------
- self.stride = stride
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.num_classes = num_classes
- self.num_coords = num_coords
- # --------- Network Parameters ----------
- self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
- self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
- self.init_bias()
-
- def init_bias(self):
- # cls pred bias
- b = self.cls_pred.bias.view(1, -1)
- b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
- self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred bias
- b = self.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- def generate_anchors(self, fmp_size):
- """
- fmp_size: (List) [H, W]
- """
- # generate grid cells
- fmp_h, fmp_w = fmp_size
- anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
- # [H, W, 2] -> [HW, 2]
- anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
- anchors += 0.5 # add center offset
- anchors *= self.stride
- return anchors
-
- def forward(self, cls_feat, reg_feat):
- # pred
- cls_pred = self.cls_pred(cls_feat)
- reg_pred = self.reg_pred(reg_feat)
- # generate anchor boxes: [M, 4]
- B, _, H, W = cls_pred.size()
- fmp_size = [H, W]
- anchors = self.generate_anchors(fmp_size)
- anchors = anchors.to(cls_pred.device)
- # stride tensor: [M, 1]
- stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
-
- # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
- cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
- reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
- # ---------------- Decode bbox ----------------
- ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2]
- wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
- pred_x1y1 = ctr_pred - wh_pred * 0.5
- pred_x2y2 = ctr_pred + wh_pred * 0.5
- box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
- # output dict
- outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
- "pred_reg": reg_pred, # (Tensor) [B, M, 4]
- "pred_box": box_pred, # (Tensor) [B, M, 4]
- "anchors": anchors, # (Tensor) [M, 2]
- "stride": self.stride, # (Int)
- "stride_tensors": stride_tensor # List(Tensor) [M, 1]
- }
- return outputs
- ## Multi-level pred layer
- class MDetPDLayer(nn.Module):
- def __init__(self,
- cls_dim,
- reg_dim,
- strides,
- num_classes :int = 80,
- num_coords :int = 4,
- num_levels :int = 3):
- super().__init__()
- # --------- Basic Parameters ----------
- self.cls_dim = cls_dim
- self.reg_dim = reg_dim
- self.strides = strides
- self.num_classes = num_classes
- self.num_coords = num_coords
- self.num_levels = num_levels
- # ----------- Network Parameters -----------
- ## multi-level pred layers
- self.multi_level_preds = nn.ModuleList(
- [SDetPDLayer(cls_dim = cls_dim,
- reg_dim = reg_dim,
- stride = strides[level],
- num_classes = num_classes,
- num_coords = num_coords)
- for level in range(num_levels)
- ])
-
- def forward(self, inputs):
- all_anchors = []
- all_strides = []
- all_cls_preds = []
- all_box_preds = []
- all_reg_preds = []
- cls_feats, reg_feats = inputs["cls_feat"], inputs["reg_feat"]
- for level in range(self.num_levels):
- # ---------------- Single level prediction ----------------
- outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
- # collect results
- all_cls_preds.append(outputs["pred_cls"])
- all_box_preds.append(outputs["pred_box"])
- all_reg_preds.append(outputs["pred_reg"])
- all_anchors.append(outputs["anchors"])
- all_strides.append(outputs["stride_tensors"])
-
- # output dict
- outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
- "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
- "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
- "anchors": all_anchors, # List(Tensor) [M, 2]
- "strides": self.strides, # List(Int) [8, 16, 32]
- "stride_tensors": all_strides # List(Tensor) [M, 1]
- }
- return outputs
- # -------------------- Segmentation predictor --------------------
- class MaskPDLayer(nn.Module):
- def __init__(self, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
-
- def forward(self, x):
- return
- # -------------------- Human-Pose predictor --------------------
- class PosePDLayer(nn.Module):
- def __init__(self, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
-
- def forward(self, x):
- return
|