rtcdet_pred.py 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. def build_det_pred(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  5. pred_layers = MDetPDLayer(cls_dim = cls_dim,
  6. reg_dim = reg_dim,
  7. strides = strides,
  8. num_classes = num_classes,
  9. num_coords = num_coords,
  10. num_levels = num_levels)
  11. return pred_layers
  12. def build_seg_pred():
  13. return MaskPDLayer()
  14. def build_pose_pred():
  15. return PosePDLayer()
  16. # ---------------------------- Detection predictor ----------------------------
  17. ## Single-level Detection Prediction Layer
  18. class SDetPDLayer(nn.Module):
  19. def __init__(self,
  20. cls_dim :int = 256,
  21. reg_dim :int = 256,
  22. stride :int = 32,
  23. num_classes :int = 80,
  24. num_coords :int = 4):
  25. super().__init__()
  26. # --------- Basic Parameters ----------
  27. self.stride = stride
  28. self.cls_dim = cls_dim
  29. self.reg_dim = reg_dim
  30. self.num_classes = num_classes
  31. self.num_coords = num_coords
  32. # --------- Network Parameters ----------
  33. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  34. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  35. self.init_bias()
  36. def init_bias(self):
  37. # cls pred bias
  38. b = self.cls_pred.bias.view(1, -1)
  39. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  40. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  41. # reg pred bias
  42. b = self.reg_pred.bias.view(-1, )
  43. b.data.fill_(1.0)
  44. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  45. def generate_anchors(self, fmp_size):
  46. """
  47. fmp_size: (List) [H, W]
  48. """
  49. # generate grid cells
  50. fmp_h, fmp_w = fmp_size
  51. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  52. # [H, W, 2] -> [HW, 2]
  53. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  54. anchors += 0.5 # add center offset
  55. anchors *= self.stride
  56. return anchors
  57. def forward(self, cls_feat, reg_feat):
  58. # pred
  59. cls_pred = self.cls_pred(cls_feat)
  60. reg_pred = self.reg_pred(reg_feat)
  61. # generate anchor boxes: [M, 4]
  62. B, _, H, W = cls_pred.size()
  63. fmp_size = [H, W]
  64. anchors = self.generate_anchors(fmp_size)
  65. anchors = anchors.to(cls_pred.device)
  66. # stride tensor: [M, 1]
  67. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  68. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  69. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  70. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  71. # ---------------- Decode bbox ----------------
  72. ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2]
  73. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  74. pred_x1y1 = ctr_pred - wh_pred * 0.5
  75. pred_x2y2 = ctr_pred + wh_pred * 0.5
  76. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  77. # output dict
  78. outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
  79. "pred_reg": reg_pred, # (Tensor) [B, M, 4]
  80. "pred_box": box_pred, # (Tensor) [B, M, 4]
  81. "anchors": anchors, # (Tensor) [M, 2]
  82. "stride": self.stride, # (Int)
  83. "stride_tensors": stride_tensor # List(Tensor) [M, 1]
  84. }
  85. return outputs
  86. ## Multi-level pred layer
  87. class MDetPDLayer(nn.Module):
  88. def __init__(self,
  89. cls_dim,
  90. reg_dim,
  91. strides,
  92. num_classes :int = 80,
  93. num_coords :int = 4,
  94. num_levels :int = 3):
  95. super().__init__()
  96. # --------- Basic Parameters ----------
  97. self.cls_dim = cls_dim
  98. self.reg_dim = reg_dim
  99. self.strides = strides
  100. self.num_classes = num_classes
  101. self.num_coords = num_coords
  102. self.num_levels = num_levels
  103. # ----------- Network Parameters -----------
  104. ## multi-level pred layers
  105. self.multi_level_preds = nn.ModuleList(
  106. [SDetPDLayer(cls_dim = cls_dim,
  107. reg_dim = reg_dim,
  108. stride = strides[level],
  109. num_classes = num_classes,
  110. num_coords = num_coords)
  111. for level in range(num_levels)
  112. ])
  113. def forward(self, inputs):
  114. all_anchors = []
  115. all_strides = []
  116. all_cls_preds = []
  117. all_box_preds = []
  118. all_reg_preds = []
  119. cls_feats, reg_feats = inputs["cls_feat"], inputs["reg_feat"]
  120. for level in range(self.num_levels):
  121. # ---------------- Single level prediction ----------------
  122. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  123. # collect results
  124. all_cls_preds.append(outputs["pred_cls"])
  125. all_box_preds.append(outputs["pred_box"])
  126. all_reg_preds.append(outputs["pred_reg"])
  127. all_anchors.append(outputs["anchors"])
  128. all_strides.append(outputs["stride_tensors"])
  129. # output dict
  130. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  131. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  132. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  133. "anchors": all_anchors, # List(Tensor) [M, 2]
  134. "strides": self.strides, # List(Int) [8, 16, 32]
  135. "stride_tensors": all_strides # List(Tensor) [M, 1]
  136. }
  137. return outputs
  138. # -------------------- Segmentation predictor --------------------
  139. class MaskPDLayer(nn.Module):
  140. def __init__(self, *args, **kwargs) -> None:
  141. super().__init__(*args, **kwargs)
  142. def forward(self, x):
  143. return
  144. # -------------------- Human-Pose predictor --------------------
  145. class PosePDLayer(nn.Module):
  146. def __init__(self, *args, **kwargs) -> None:
  147. super().__init__(*args, **kwargs)
  148. def forward(self, x):
  149. return