rtcdet.py 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. # Real-time Convolutional Object Detector
  2. # --------------- Torch components ---------------
  3. import torch
  4. import torch.nn as nn
  5. # --------------- Model components ---------------
  6. from .rtcdet_backbone import build_backbone
  7. from .rtcdet_neck import build_neck
  8. from .rtcdet_pafpn import build_fpn
  9. from .rtcdet_head import build_det_head, build_seg_head, build_pose_head
  10. from .rtcdet_pred import build_det_pred, build_seg_pred, build_pose_pred
  11. # --------------- External components ---------------
  12. from utils.misc import multiclass_nms
  13. # Real-time Convolutional General Object Detector
  14. class RTCDet(nn.Module):
  15. def __init__(self,
  16. cfg,
  17. device,
  18. num_classes = 20,
  19. conf_thresh = 0.01,
  20. nms_thresh = 0.5,
  21. topk = 1000,
  22. trainable = False,
  23. deploy = False,
  24. no_multi_labels = False,
  25. nms_class_agnostic = False,
  26. ):
  27. super(RTCDet, self).__init__()
  28. # ---------------- Basic Parameters ----------------
  29. self.cfg = cfg
  30. self.device = device
  31. self.strides = cfg['stride']
  32. self.num_classes = num_classes
  33. self.trainable = trainable
  34. self.conf_thresh = conf_thresh
  35. self.nms_thresh = nms_thresh
  36. self.num_levels = len(self.strides)
  37. self.num_classes = num_classes
  38. self.topk_candidates = topk
  39. self.deploy = deploy
  40. self.no_multi_labels = no_multi_labels
  41. self.nms_class_agnostic = nms_class_agnostic
  42. self.head_dim = round(256 * cfg['width'])
  43. # ---------------- Network Parameters ----------------
  44. ## ----------- Backbone -----------
  45. self.backbone, feat_dims = build_backbone(cfg, pretrained=cfg['bk_pretrained']&trainable)
  46. ## ----------- Neck: SPP -----------
  47. self.neck = build_neck(cfg, feat_dims[-1], feat_dims[-1])
  48. feat_dims[-1] = self.neck.out_dim
  49. ## ----------- Neck: FPN -----------
  50. self.fpn = build_fpn(cfg, feat_dims, out_dim=self.head_dim)
  51. self.fpn_dims = self.fpn.out_dim
  52. ## ----------- Head -----------
  53. self.det_head = nn.Sequential(
  54. build_det_head(cfg['det_head'], self.fpn_dims, self.head_dim, self.num_levels),
  55. build_det_pred(self.head_dim, self.head_dim, self.strides, num_classes, 4, self.num_levels)
  56. )
  57. self.seg_head = nn.Sequential(
  58. build_seg_head(cfg['seg_head']),
  59. build_seg_pred()
  60. ) if cfg['seg_head']['name'] is not None else None
  61. self.pos_head = nn.Sequential(
  62. build_pose_head(cfg['pos_head']),
  63. build_pose_pred()
  64. ) if cfg['pos_head']['name'] is not None else None
  65. # Post process
  66. def post_process(self, cls_preds, box_preds):
  67. """
  68. Input:
  69. cls_preds: List[np.array] -> [[M, C], ...]
  70. box_preds: List[np.array] -> [[M, 4], ...]
  71. Output:
  72. bboxes: np.array -> [N, 4]
  73. scores: np.array -> [N,]
  74. labels: np.array -> [N,]
  75. """
  76. assert len(cls_preds) == self.num_levels
  77. all_scores = []
  78. all_labels = []
  79. all_bboxes = []
  80. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  81. cls_pred_i = cls_pred_i[0]
  82. box_pred_i = box_pred_i[0]
  83. if self.no_multi_labels:
  84. # [M,]
  85. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  86. # Keep top k top scoring indices only.
  87. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  88. # topk candidates
  89. predicted_prob, topk_idxs = scores.sort(descending=True)
  90. topk_scores = predicted_prob[:num_topk]
  91. topk_idxs = topk_idxs[:num_topk]
  92. # filter out the proposals with low confidence score
  93. keep_idxs = topk_scores > self.conf_thresh
  94. scores = topk_scores[keep_idxs]
  95. topk_idxs = topk_idxs[keep_idxs]
  96. labels = labels[topk_idxs]
  97. bboxes = box_pred_i[topk_idxs]
  98. else:
  99. # [M, C] -> [MC,]
  100. scores_i = cls_pred_i.sigmoid().flatten()
  101. # Keep top k top scoring indices only.
  102. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  103. # torch.sort is actually faster than .topk (at least on GPUs)
  104. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  105. topk_scores = predicted_prob[:num_topk]
  106. topk_idxs = topk_idxs[:num_topk]
  107. # filter out the proposals with low confidence score
  108. keep_idxs = topk_scores > self.conf_thresh
  109. scores = topk_scores[keep_idxs]
  110. topk_idxs = topk_idxs[keep_idxs]
  111. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  112. labels = topk_idxs % self.num_classes
  113. bboxes = box_pred_i[anchor_idxs]
  114. all_scores.append(scores)
  115. all_labels.append(labels)
  116. all_bboxes.append(bboxes)
  117. scores = torch.cat(all_scores, dim=0)
  118. labels = torch.cat(all_labels, dim=0)
  119. bboxes = torch.cat(all_bboxes, dim=0)
  120. # to cpu & numpy
  121. scores = scores.cpu().numpy()
  122. labels = labels.cpu().numpy()
  123. bboxes = bboxes.cpu().numpy()
  124. # nms
  125. scores, labels, bboxes = multiclass_nms(
  126. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  127. return bboxes, scores, labels
  128. # Main process
  129. def forward(self, x):
  130. # ---------------- Backbone ----------------
  131. pyramid_feats = self.backbone(x)
  132. # ---------------- Neck: SPP ----------------
  133. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  134. # ---------------- Neck: PaFPN ----------------
  135. pyramid_feats = self.fpn(pyramid_feats)
  136. # ---------------- Head ----------------
  137. det_outpus = self.forward_det_head(pyramid_feats)
  138. seg_outpus = self.forward_seg_head(pyramid_feats)
  139. pos_outpus = self.forward_pos_head(pyramid_feats)
  140. outputs = {
  141. 'det_outputs': det_outpus,
  142. 'seg_outputs': seg_outpus,
  143. 'pos_outputs': pos_outpus
  144. }
  145. if not self.trainable:
  146. if seg_outpus is not None:
  147. det_outpus.update(seg_outpus)
  148. if pos_outpus is not None:
  149. det_outpus.update(pos_outpus)
  150. outputs = det_outpus
  151. else:
  152. outputs = {
  153. 'det_outputs': det_outpus,
  154. 'seg_outputs': seg_outpus,
  155. 'pos_outputs': pos_outpus
  156. }
  157. return outputs
  158. def forward_det_head(self, x):
  159. # ---------------- Heads ----------------
  160. outputs = self.det_head(x)
  161. # ---------------- Post-process ----------------
  162. if not self.trainable:
  163. all_cls_preds = outputs['pred_cls']
  164. all_box_preds = outputs['pred_box']
  165. if self.deploy:
  166. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  167. box_preds = torch.cat(all_box_preds, dim=1)[0]
  168. scores = cls_preds.sigmoid()
  169. bboxes = box_preds
  170. # [n_anchors_all, 4 + C]
  171. outputs = torch.cat([bboxes, scores], dim=-1)
  172. else:
  173. # post process
  174. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  175. outputs = {
  176. "scores": scores,
  177. "labels": labels,
  178. "bboxes": bboxes
  179. }
  180. return outputs
  181. def forward_seg_head(self, x):
  182. if self.seg_head is None:
  183. return None
  184. def forward_pos_head(self, x):
  185. if self.pos_head is None:
  186. return None