| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- from typing import Any
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from utils.box_ops import get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import AlignedSimOTA
- class Criterion(object):
- def __init__(self, args, cfg, device, num_classes=80):
- self.args = args
- self.cfg = cfg
- self.device = device
- self.num_classes = num_classes
- self.max_epoch = args.max_epoch
- self.no_aug_epoch = args.no_aug_epoch
- self.aux_bbox_loss = False
- # --------------- Loss config ---------------
- self.loss_cls_weight = cfg['loss_cls_weight']
- self.loss_box_weight = cfg['loss_box_weight']
- # --------------- Matcher config ---------------
- self.matcher_hpy = cfg['matcher_hpy']
- self.matcher = AlignedSimOTA(soft_center_radius = self.matcher_hpy['soft_center_radius'],
- topk_candidates = self.matcher_hpy['topk_candidates'],
- num_classes = num_classes,
- )
- # -------------------- Basic loss functions --------------------
- def loss_classes(self, pred_cls, target, beta=2.0):
- # Quality FocalLoss
- """
- pred_cls: (torch.Tensor): [N, C]。
- target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
- """
- label, score = target
- pred_sigmoid = pred_cls.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_cls.shape)
- ce_loss = F.binary_cross_entropy_with_logits(
- pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
-
- bg_class_ind = pred_cls.shape[-1]
- pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
- pos_label = label[pos].long()
- scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
- ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
- pred_cls[pos, pos_label], score[pos],
- reduction='none') * scale_factor.abs().pow(beta)
- return ce_loss
-
- def loss_bboxes(self, pred_box, gt_box):
- ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
- loss_box = 1.0 - ious
- return loss_box
-
- def loss_bboxes_aux(self, pred_reg, gt_box, anchors, stride_tensors):
- # xyxy -> cxcy&bwbh
- gt_cxcy = (gt_box[..., :2] + gt_box[..., 2:]) * 0.5
- gt_bwbh = gt_box[..., 2:] - gt_box[..., :2]
- # encode gt box
- gt_cxcy_encode = (gt_cxcy - anchors) / stride_tensors
- gt_bwbh_encode = torch.log(gt_bwbh / stride_tensors)
- gt_box_encode = torch.cat([gt_cxcy_encode, gt_bwbh_encode], dim=-1)
- # l1 loss
- loss_box_aux = F.l1_loss(pred_reg, gt_box_encode, reduction='none')
- return loss_box_aux
- # -------------------- Task loss functions --------------------
- def compute_det_loss(self, outputs, targets, epoch=0):
- """
- Input:
- outputs: (Dict) -> {
- 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
- 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
- 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
- 'strides': (List[Int])
- }
- target: (List[Dict]) [
- {'boxes': (torch.Tensor) -> [N, 4],
- 'labels': (torch.Tensor) -> [N,],
- ...}, ...
- ]
- Output:
- loss_dict: (Dict) -> {
- 'loss_cls': (torch.Tensor) It is a scalar.),
- 'loss_box': (torch.Tensor) It is a scalar.),
- 'loss_box_aux': (torch.Tensor) It is a scalar.),
- 'losses': (torch.Tensor) It is a scalar.),
- }
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
-
- # --------------- label assignment ---------------
- cls_targets = []
- box_targets = []
- assign_metrics = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
- tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
- assigned_result = self.matcher(fpn_strides=fpn_strides,
- anchors=anchors,
- pred_cls=cls_preds[batch_idx].detach(),
- pred_box=box_preds[batch_idx].detach(),
- gt_labels=tgt_labels,
- gt_bboxes=tgt_bboxes
- )
- cls_targets.append(assigned_result['assigned_labels'])
- box_targets.append(assigned_result['assigned_bboxes'])
- assign_metrics.append(assigned_result['assign_metrics'])
- # List[B, M, C] -> Tensor[BM, C]
- cls_targets = torch.cat(cls_targets, dim=0)
- box_targets = torch.cat(box_targets, dim=0)
- assign_metrics = torch.cat(assign_metrics, dim=0)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
- num_fgs = assign_metrics.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
- # ------------------ Classification loss ------------------
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
- loss_cls = loss_cls.sum() / num_fgs
- # ------------------ Regression loss ------------------
- box_preds_pos = box_preds.view(-1, 4)[pos_inds]
- box_targets_pos = box_targets[pos_inds]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
- loss_box = loss_box.sum() / num_fgs
- # total loss
- losses = self.loss_cls_weight * loss_cls + \
- self.loss_box_weight * loss_box
- # ------------------ Aux regression loss ------------------
- loss_box_aux = None
- if epoch >= (self.max_epoch - self.no_aug_epoch - 1):
- ## reg_preds
- reg_preds = torch.cat(outputs['pred_reg'], dim=1)
- reg_preds_pos = reg_preds.view(-1, 4)[pos_inds]
- ## anchor tensors
- anchors_tensors = torch.cat(outputs['anchors'], dim=0)[None].repeat(bs, 1, 1)
- anchors_tensors_pos = anchors_tensors.view(-1, 2)[pos_inds]
- ## stride tensors
- stride_tensors = torch.cat(outputs['stride_tensors'], dim=0)[None].repeat(bs, 1, 1)
- stride_tensors_pos = stride_tensors.view(-1, 1)[pos_inds]
- ## aux loss
- loss_box_aux = self.loss_bboxes_aux(reg_preds_pos, box_targets_pos, anchors_tensors_pos, stride_tensors_pos)
- loss_box_aux = loss_box_aux.sum() / num_fgs
- losses += loss_box_aux
- # Loss dict
- if loss_box_aux is None:
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- losses = losses
- )
- else:
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- loss_box_aux = loss_box_aux,
- losses = losses
- )
- return loss_dict
- def compute_seg_loss(self, outputs, targets, epoch=0):
- """
- Input:
- outputs: (Dict) -> {
- 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
- 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
- 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
- 'strides': (List[Int])
- }
- target: (List[Dict]) [
- {'boxes': (torch.Tensor) -> [N, 4],
- 'labels': (torch.Tensor) -> [N,],
- ...}, ...
- ]
- Output:
- loss_dict: (Dict) -> {
- 'loss_cls': (torch.Tensor) It is a scalar.),
- 'loss_box': (torch.Tensor) It is a scalar.),
- 'loss_box_aux': (torch.Tensor) It is a scalar.),
- 'losses': (torch.Tensor) It is a scalar.),
- }
- """
- def compute_pos_loss(self, outputs, targets, epoch=0):
- """
- Input:
- outputs: (Dict) -> {
- 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
- 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
- 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
- 'strides': (List[Int])
- }
- target: (List[Dict]) [
- {'boxes': (torch.Tensor) -> [N, 4],
- 'labels': (torch.Tensor) -> [N,],
- ...}, ...
- ]
- Output:
- loss_dict: (Dict) -> {
- 'loss_cls': (torch.Tensor) It is a scalar.),
- 'loss_box': (torch.Tensor) It is a scalar.),
- 'loss_box_aux': (torch.Tensor) It is a scalar.),
- 'losses': (torch.Tensor) It is a scalar.),
- }
- """
- def __call__(self, outputs, targets, epoch=0, task='det'):
- # -------------- Detection loss --------------
- det_loss_dict = None
- if outputs['det_outputs'] is not None:
- det_loss_dict = self.compute_det_loss(outputs['det_outputs'], targets, epoch)
- # -------------- Segmentation loss --------------
- seg_loss_dict = None
- if outputs['seg_outputs'] is not None:
- seg_loss_dict = self.compute_seg_loss(outputs['seg_outputs'], targets, epoch)
- # -------------- Human pose loss --------------
- pos_loss_dict = None
- if outputs['pos_outputs'] is not None:
- pos_loss_dict = self.compute_seg_loss(outputs['pos_outputs'], targets, epoch)
- # Loss dict
- if task == 'det':
- return det_loss_dict
-
- if task == 'det_seg':
- return {'det_loss_dict': det_loss_dict,
- 'seg_loss_dict': seg_loss_dict}
-
- if task == 'det_pos':
- return {'det_loss_dict': det_loss_dict,
- 'pos_loss_dict': pos_loss_dict}
-
- if task == 'det_seg_pos':
- return {'det_loss_dict': det_loss_dict,
- 'seg_loss_dict': seg_loss_dict,
- 'pos_loss_dict': pos_loss_dict}
- def build_criterion(args, cfg, device, num_classes):
- criterion = Criterion(args, cfg, device, num_classes)
- return criterion
- if __name__ == "__main__":
- pass
|