engine.py 99 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # ----------------------- Det trainers -----------------------
  19. ## YOLOv8 Trainer
  20. class Yolov8Trainer(object):
  21. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  22. # ------------------- basic parameters -------------------
  23. self.args = args
  24. self.epoch = 0
  25. self.best_map = -1.
  26. self.device = device
  27. self.criterion = criterion
  28. self.world_size = world_size
  29. self.heavy_eval = False
  30. self.last_opt_step = 0
  31. self.clip_grad = 10
  32. # weak augmentatino stage
  33. self.second_stage = False
  34. self.third_stage = False
  35. self.second_stage_epoch = args.no_aug_epoch
  36. self.third_stage_epoch = args.no_aug_epoch // 2
  37. # path to save model
  38. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  39. os.makedirs(self.path_to_save, exist_ok=True)
  40. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  41. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  42. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  43. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  44. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  45. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  46. self.data_cfg = data_cfg
  47. self.model_cfg = model_cfg
  48. self.trans_cfg = trans_cfg
  49. # ---------------------------- Build Transform ----------------------------
  50. self.train_transform, self.trans_cfg = build_transform(
  51. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  52. self.val_transform, _ = build_transform(
  53. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  54. # ---------------------------- Build Dataset & Dataloader ----------------------------
  55. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  56. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  57. # ---------------------------- Build Evaluator ----------------------------
  58. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  59. # ---------------------------- Build Grad. Scaler ----------------------------
  60. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  61. # ---------------------------- Build Optimizer ----------------------------
  62. accumulate = max(1, round(64 / self.args.batch_size))
  63. print('Grad Accumulate: {}'.format(accumulate))
  64. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  65. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  66. # ---------------------------- Build LR Scheduler ----------------------------
  67. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  68. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  69. if self.args.resume and self.args.resume != 'None':
  70. self.lr_scheduler.step()
  71. # ---------------------------- Build Model-EMA ----------------------------
  72. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  73. print('Build ModelEMA ...')
  74. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  75. else:
  76. self.model_ema = None
  77. def train(self, model):
  78. for epoch in range(self.start_epoch, self.args.max_epoch):
  79. if self.args.distributed:
  80. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  81. # check second stage
  82. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  83. self.check_second_stage()
  84. # save model of the last mosaic epoch
  85. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  86. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  87. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  88. torch.save({'model': model.state_dict(),
  89. 'mAP': round(self.evaluator.map*100, 1),
  90. 'optimizer': self.optimizer.state_dict(),
  91. 'epoch': self.epoch,
  92. 'args': self.args},
  93. checkpoint_path)
  94. # check third stage
  95. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  96. self.check_third_stage()
  97. # save model of the last mosaic epoch
  98. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  99. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  100. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  101. torch.save({'model': model.state_dict(),
  102. 'mAP': round(self.evaluator.map*100, 1),
  103. 'optimizer': self.optimizer.state_dict(),
  104. 'epoch': self.epoch,
  105. 'args': self.args},
  106. checkpoint_path)
  107. # train one epoch
  108. self.epoch = epoch
  109. self.train_one_epoch(model)
  110. # eval one epoch
  111. if self.heavy_eval:
  112. model_eval = model.module if self.args.distributed else model
  113. self.eval(model_eval)
  114. else:
  115. model_eval = model.module if self.args.distributed else model
  116. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  117. self.eval(model_eval)
  118. if self.args.debug:
  119. print("For debug mode, we only train 1 epoch")
  120. break
  121. def eval(self, model):
  122. # chech model
  123. model_eval = model if self.model_ema is None else self.model_ema.ema
  124. if distributed_utils.is_main_process():
  125. # check evaluator
  126. if self.evaluator is None:
  127. print('No evaluator ... save model and go on training.')
  128. print('Saving state, epoch: {}'.format(self.epoch))
  129. weight_name = '{}_no_eval.pth'.format(self.args.model)
  130. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  131. torch.save({'model': model_eval.state_dict(),
  132. 'mAP': -1.,
  133. 'optimizer': self.optimizer.state_dict(),
  134. 'epoch': self.epoch,
  135. 'args': self.args},
  136. checkpoint_path)
  137. else:
  138. print('eval ...')
  139. # set eval mode
  140. model_eval.trainable = False
  141. model_eval.eval()
  142. # evaluate
  143. with torch.no_grad():
  144. self.evaluator.evaluate(model_eval)
  145. # save model
  146. cur_map = self.evaluator.map
  147. if cur_map > self.best_map:
  148. # update best-map
  149. self.best_map = cur_map
  150. # save model
  151. print('Saving state, epoch:', self.epoch)
  152. weight_name = '{}_best.pth'.format(self.args.model)
  153. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  154. torch.save({'model': model_eval.state_dict(),
  155. 'mAP': round(self.best_map*100, 1),
  156. 'optimizer': self.optimizer.state_dict(),
  157. 'epoch': self.epoch,
  158. 'args': self.args},
  159. checkpoint_path)
  160. # set train mode.
  161. model_eval.trainable = True
  162. model_eval.train()
  163. if self.args.distributed:
  164. # wait for all processes to synchronize
  165. dist.barrier()
  166. def train_one_epoch(self, model):
  167. # basic parameters
  168. epoch_size = len(self.train_loader)
  169. img_size = self.args.img_size
  170. t0 = time.time()
  171. nw = epoch_size * self.args.wp_epoch
  172. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  173. # train one epoch
  174. for iter_i, (images, targets) in enumerate(self.train_loader):
  175. ni = iter_i + self.epoch * epoch_size
  176. # Warmup
  177. if ni <= nw:
  178. xi = [0, nw] # x interp
  179. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  180. for j, x in enumerate(self.optimizer.param_groups):
  181. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  182. x['lr'] = np.interp(
  183. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  184. if 'momentum' in x:
  185. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  186. # to device
  187. images = images.to(self.device, non_blocking=True).float() / 255.
  188. # Multi scale
  189. if self.args.multi_scale:
  190. images, targets, img_size = self.rescale_image_targets(
  191. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  192. else:
  193. targets = self.refine_targets(targets, self.args.min_box_size)
  194. # visualize train targets
  195. if self.args.vis_tgt:
  196. vis_data(images*255, targets)
  197. # inference
  198. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  199. outputs = model(images)
  200. # loss
  201. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  202. losses = loss_dict['losses']
  203. losses *= images.shape[0] # loss * bs
  204. # reduce
  205. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  206. # gradient averaged between devices in DDP mode
  207. losses *= distributed_utils.get_world_size()
  208. # backward
  209. self.scaler.scale(losses).backward()
  210. # Optimize
  211. if ni - self.last_opt_step >= accumulate:
  212. if self.clip_grad > 0:
  213. # unscale gradients
  214. self.scaler.unscale_(self.optimizer)
  215. # clip gradients
  216. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  217. # optimizer.step
  218. self.scaler.step(self.optimizer)
  219. self.scaler.update()
  220. self.optimizer.zero_grad()
  221. # ema
  222. if self.model_ema is not None:
  223. self.model_ema.update(model)
  224. self.last_opt_step = ni
  225. # display
  226. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  227. t1 = time.time()
  228. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  229. # basic infor
  230. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  231. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  232. log += '[lr: {:.6f}]'.format(cur_lr[2])
  233. # loss infor
  234. for k in loss_dict_reduced.keys():
  235. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  236. # other infor
  237. log += '[time: {:.2f}]'.format(t1 - t0)
  238. log += '[size: {}]'.format(img_size)
  239. # print log infor
  240. print(log, flush=True)
  241. t0 = time.time()
  242. if self.args.debug:
  243. print("For debug mode, we only train 1 iteration")
  244. break
  245. self.lr_scheduler.step()
  246. def check_second_stage(self):
  247. # set second stage
  248. print('============== Second stage of Training ==============')
  249. self.second_stage = True
  250. # close mosaic augmentation
  251. if self.train_loader.dataset.mosaic_prob > 0.:
  252. print(' - Close < Mosaic Augmentation > ...')
  253. self.train_loader.dataset.mosaic_prob = 0.
  254. self.heavy_eval = True
  255. # close mixup augmentation
  256. if self.train_loader.dataset.mixup_prob > 0.:
  257. print(' - Close < Mixup Augmentation > ...')
  258. self.train_loader.dataset.mixup_prob = 0.
  259. self.heavy_eval = True
  260. # close rotation augmentation
  261. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  262. print(' - Close < degress of rotation > ...')
  263. self.trans_cfg['degrees'] = 0.0
  264. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  265. print(' - Close < shear of rotation >...')
  266. self.trans_cfg['shear'] = 0.0
  267. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  268. print(' - Close < perspective of rotation > ...')
  269. self.trans_cfg['perspective'] = 0.0
  270. # build a new transform for second stage
  271. print(' - Rebuild transforms ...')
  272. self.train_transform, self.trans_cfg = build_transform(
  273. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  274. self.train_loader.dataset.transform = self.train_transform
  275. def check_third_stage(self):
  276. # set third stage
  277. print('============== Third stage of Training ==============')
  278. self.third_stage = True
  279. # close random affine
  280. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  281. print(' - Close < translate of affine > ...')
  282. self.trans_cfg['translate'] = 0.0
  283. if 'scale' in self.trans_cfg.keys():
  284. print(' - Close < scale of affine >...')
  285. self.trans_cfg['scale'] = [1.0, 1.0]
  286. # build a new transform for second stage
  287. print(' - Rebuild transforms ...')
  288. self.train_transform, self.trans_cfg = build_transform(
  289. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  290. self.train_loader.dataset.transform = self.train_transform
  291. def refine_targets(self, targets, min_box_size):
  292. # rescale targets
  293. for tgt in targets:
  294. boxes = tgt["boxes"].clone()
  295. labels = tgt["labels"].clone()
  296. # refine tgt
  297. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  298. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  299. keep = (min_tgt_size >= min_box_size)
  300. tgt["boxes"] = boxes[keep]
  301. tgt["labels"] = labels[keep]
  302. return targets
  303. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  304. """
  305. Deployed for Multi scale trick.
  306. """
  307. if isinstance(stride, int):
  308. max_stride = stride
  309. elif isinstance(stride, list):
  310. max_stride = max(stride)
  311. # During training phase, the shape of input image is square.
  312. old_img_size = images.shape[-1]
  313. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  314. new_img_size = new_img_size // max_stride * max_stride # size
  315. if new_img_size / old_img_size != 1:
  316. # interpolate
  317. images = torch.nn.functional.interpolate(
  318. input=images,
  319. size=new_img_size,
  320. mode='bilinear',
  321. align_corners=False)
  322. # rescale targets
  323. for tgt in targets:
  324. boxes = tgt["boxes"].clone()
  325. labels = tgt["labels"].clone()
  326. boxes = torch.clamp(boxes, 0, old_img_size)
  327. # rescale box
  328. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  329. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  330. # refine tgt
  331. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  332. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  333. keep = (min_tgt_size >= min_box_size)
  334. tgt["boxes"] = boxes[keep]
  335. tgt["labels"] = labels[keep]
  336. return images, targets, new_img_size
  337. ## YOLOX Trainer
  338. class YoloxTrainer(object):
  339. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  340. # ------------------- basic parameters -------------------
  341. self.args = args
  342. self.epoch = 0
  343. self.best_map = -1.
  344. self.device = device
  345. self.criterion = criterion
  346. self.world_size = world_size
  347. self.grad_accumulate = args.grad_accumulate
  348. self.no_aug_epoch = args.no_aug_epoch
  349. self.heavy_eval = False
  350. # weak augmentatino stage
  351. self.second_stage = False
  352. self.third_stage = False
  353. self.second_stage_epoch = args.no_aug_epoch
  354. self.third_stage_epoch = args.no_aug_epoch // 2
  355. # path to save model
  356. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  357. os.makedirs(self.path_to_save, exist_ok=True)
  358. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  359. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  360. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  361. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  362. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  363. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  364. self.data_cfg = data_cfg
  365. self.model_cfg = model_cfg
  366. self.trans_cfg = trans_cfg
  367. # ---------------------------- Build Transform ----------------------------
  368. self.train_transform, self.trans_cfg = build_transform(
  369. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  370. self.val_transform, _ = build_transform(
  371. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  372. # ---------------------------- Build Dataset & Dataloader ----------------------------
  373. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  374. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  375. # ---------------------------- Build Evaluator ----------------------------
  376. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  377. # ---------------------------- Build Grad. Scaler ----------------------------
  378. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  379. # ---------------------------- Build Optimizer ----------------------------
  380. self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
  381. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  382. # ---------------------------- Build LR Scheduler ----------------------------
  383. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
  384. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  385. if self.args.resume and self.args.resume != 'None':
  386. self.lr_scheduler.step()
  387. # ---------------------------- Build Model-EMA ----------------------------
  388. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  389. print('Build ModelEMA ...')
  390. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  391. else:
  392. self.model_ema = None
  393. def train(self, model):
  394. for epoch in range(self.start_epoch, self.args.max_epoch):
  395. if self.args.distributed:
  396. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  397. # check second stage
  398. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  399. self.check_second_stage()
  400. # save model of the last mosaic epoch
  401. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  402. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  403. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  404. torch.save({'model': model.state_dict(),
  405. 'mAP': round(self.evaluator.map*100, 1),
  406. 'optimizer': self.optimizer.state_dict(),
  407. 'epoch': self.epoch,
  408. 'args': self.args},
  409. checkpoint_path)
  410. # check third stage
  411. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  412. self.check_third_stage()
  413. # save model of the last mosaic epoch
  414. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  415. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  416. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  417. torch.save({'model': model.state_dict(),
  418. 'mAP': round(self.evaluator.map*100, 1),
  419. 'optimizer': self.optimizer.state_dict(),
  420. 'epoch': self.epoch,
  421. 'args': self.args},
  422. checkpoint_path)
  423. # train one epoch
  424. self.epoch = epoch
  425. self.train_one_epoch(model)
  426. # eval one epoch
  427. if self.heavy_eval:
  428. model_eval = model.module if self.args.distributed else model
  429. self.eval(model_eval)
  430. else:
  431. model_eval = model.module if self.args.distributed else model
  432. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  433. self.eval(model_eval)
  434. if self.args.debug:
  435. print("For debug mode, we only train 1 epoch")
  436. break
  437. def eval(self, model):
  438. # chech model
  439. model_eval = model if self.model_ema is None else self.model_ema.ema
  440. if distributed_utils.is_main_process():
  441. # check evaluator
  442. if self.evaluator is None:
  443. print('No evaluator ... save model and go on training.')
  444. print('Saving state, epoch: {}'.format(self.epoch))
  445. weight_name = '{}_no_eval.pth'.format(self.args.model)
  446. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  447. torch.save({'model': model_eval.state_dict(),
  448. 'mAP': -1.,
  449. 'optimizer': self.optimizer.state_dict(),
  450. 'epoch': self.epoch,
  451. 'args': self.args},
  452. checkpoint_path)
  453. else:
  454. print('eval ...')
  455. # set eval mode
  456. model_eval.trainable = False
  457. model_eval.eval()
  458. # evaluate
  459. with torch.no_grad():
  460. self.evaluator.evaluate(model_eval)
  461. # save model
  462. cur_map = self.evaluator.map
  463. if cur_map > self.best_map:
  464. # update best-map
  465. self.best_map = cur_map
  466. # save model
  467. print('Saving state, epoch:', self.epoch)
  468. weight_name = '{}_best.pth'.format(self.args.model)
  469. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  470. torch.save({'model': model_eval.state_dict(),
  471. 'mAP': round(self.best_map*100, 1),
  472. 'optimizer': self.optimizer.state_dict(),
  473. 'epoch': self.epoch,
  474. 'args': self.args},
  475. checkpoint_path)
  476. # set train mode.
  477. model_eval.trainable = True
  478. model_eval.train()
  479. if self.args.distributed:
  480. # wait for all processes to synchronize
  481. dist.barrier()
  482. def train_one_epoch(self, model):
  483. # basic parameters
  484. epoch_size = len(self.train_loader)
  485. img_size = self.args.img_size
  486. t0 = time.time()
  487. nw = epoch_size * self.args.wp_epoch
  488. # Train one epoch
  489. for iter_i, (images, targets) in enumerate(self.train_loader):
  490. ni = iter_i + self.epoch * epoch_size
  491. # Warmup
  492. if ni <= nw:
  493. xi = [0, nw] # x interp
  494. for j, x in enumerate(self.optimizer.param_groups):
  495. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  496. x['lr'] = np.interp(
  497. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  498. if 'momentum' in x:
  499. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  500. # To device
  501. images = images.to(self.device, non_blocking=True).float() / 255.
  502. # Multi scale
  503. if self.args.multi_scale and ni % 10 == 0:
  504. images, targets, img_size = self.rescale_image_targets(
  505. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  506. else:
  507. targets = self.refine_targets(targets, self.args.min_box_size)
  508. # Visualize train targets
  509. if self.args.vis_tgt:
  510. vis_data(images*255, targets)
  511. # Inference
  512. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  513. outputs = model(images)
  514. # Compute loss
  515. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  516. losses = loss_dict['losses']
  517. # Grad Accu
  518. if self.grad_accumulate > 1:
  519. losses /= self.grad_accumulate
  520. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  521. # Backward
  522. self.scaler.scale(losses).backward()
  523. # Optimize
  524. if ni % self.grad_accumulate == 0:
  525. self.scaler.step(self.optimizer)
  526. self.scaler.update()
  527. self.optimizer.zero_grad()
  528. # ema
  529. if self.model_ema is not None:
  530. self.model_ema.update(model)
  531. # Logs
  532. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  533. t1 = time.time()
  534. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  535. # basic infor
  536. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  537. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  538. log += '[lr: {:.6f}]'.format(cur_lr[2])
  539. # loss infor
  540. for k in loss_dict_reduced.keys():
  541. loss_val = loss_dict_reduced[k]
  542. if k == 'losses':
  543. loss_val *= self.grad_accumulate
  544. log += '[{}: {:.2f}]'.format(k, loss_val)
  545. # other infor
  546. log += '[time: {:.2f}]'.format(t1 - t0)
  547. log += '[size: {}]'.format(img_size)
  548. # print log infor
  549. print(log, flush=True)
  550. t0 = time.time()
  551. if self.args.debug:
  552. print("For debug mode, we only train 1 iteration")
  553. break
  554. # LR Schedule
  555. if not self.second_stage:
  556. self.lr_scheduler.step()
  557. def check_second_stage(self):
  558. # set second stage
  559. print('============== Second stage of Training ==============')
  560. self.second_stage = True
  561. # close mosaic augmentation
  562. if self.train_loader.dataset.mosaic_prob > 0.:
  563. print(' - Close < Mosaic Augmentation > ...')
  564. self.train_loader.dataset.mosaic_prob = 0.
  565. self.heavy_eval = True
  566. # close mixup augmentation
  567. if self.train_loader.dataset.mixup_prob > 0.:
  568. print(' - Close < Mixup Augmentation > ...')
  569. self.train_loader.dataset.mixup_prob = 0.
  570. self.heavy_eval = True
  571. # close rotation augmentation
  572. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  573. print(' - Close < degress of rotation > ...')
  574. self.trans_cfg['degrees'] = 0.0
  575. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  576. print(' - Close < shear of rotation >...')
  577. self.trans_cfg['shear'] = 0.0
  578. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  579. print(' - Close < perspective of rotation > ...')
  580. self.trans_cfg['perspective'] = 0.0
  581. # build a new transform for second stage
  582. print(' - Rebuild transforms ...')
  583. self.train_transform, self.trans_cfg = build_transform(
  584. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  585. self.train_loader.dataset.transform = self.train_transform
  586. def check_third_stage(self):
  587. # set third stage
  588. print('============== Third stage of Training ==============')
  589. self.third_stage = True
  590. # close random affine
  591. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  592. print(' - Close < translate of affine > ...')
  593. self.trans_cfg['translate'] = 0.0
  594. if 'scale' in self.trans_cfg.keys():
  595. print(' - Close < scale of affine >...')
  596. self.trans_cfg['scale'] = [1.0, 1.0]
  597. # build a new transform for second stage
  598. print(' - Rebuild transforms ...')
  599. self.train_transform, self.trans_cfg = build_transform(
  600. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  601. self.train_loader.dataset.transform = self.train_transform
  602. def refine_targets(self, targets, min_box_size):
  603. # rescale targets
  604. for tgt in targets:
  605. boxes = tgt["boxes"].clone()
  606. labels = tgt["labels"].clone()
  607. # refine tgt
  608. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  609. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  610. keep = (min_tgt_size >= min_box_size)
  611. tgt["boxes"] = boxes[keep]
  612. tgt["labels"] = labels[keep]
  613. return targets
  614. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  615. """
  616. Deployed for Multi scale trick.
  617. """
  618. if isinstance(stride, int):
  619. max_stride = stride
  620. elif isinstance(stride, list):
  621. max_stride = max(stride)
  622. # During training phase, the shape of input image is square.
  623. old_img_size = images.shape[-1]
  624. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  625. new_img_size = new_img_size // max_stride * max_stride # size
  626. if new_img_size / old_img_size != 1:
  627. # interpolate
  628. images = torch.nn.functional.interpolate(
  629. input=images,
  630. size=new_img_size,
  631. mode='bilinear',
  632. align_corners=False)
  633. # rescale targets
  634. for tgt in targets:
  635. boxes = tgt["boxes"].clone()
  636. labels = tgt["labels"].clone()
  637. boxes = torch.clamp(boxes, 0, old_img_size)
  638. # rescale box
  639. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  640. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  641. # refine tgt
  642. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  643. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  644. keep = (min_tgt_size >= min_box_size)
  645. tgt["boxes"] = boxes[keep]
  646. tgt["labels"] = labels[keep]
  647. return images, targets, new_img_size
  648. ## RTCDet Trainer
  649. class RTCTrainer(object):
  650. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  651. # ------------------- basic parameters -------------------
  652. self.args = args
  653. self.epoch = 0
  654. self.best_map = -1.
  655. self.device = device
  656. self.criterion = criterion
  657. self.world_size = world_size
  658. self.grad_accumulate = args.grad_accumulate
  659. self.clip_grad = 35
  660. self.heavy_eval = False
  661. # weak augmentatino stage
  662. self.second_stage = False
  663. self.third_stage = False
  664. self.second_stage_epoch = args.no_aug_epoch
  665. self.third_stage_epoch = args.no_aug_epoch // 2
  666. # path to save model
  667. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  668. os.makedirs(self.path_to_save, exist_ok=True)
  669. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  670. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  671. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  672. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  673. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  674. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  675. self.data_cfg = data_cfg
  676. self.model_cfg = model_cfg
  677. self.trans_cfg = trans_cfg
  678. # ---------------------------- Build Transform ----------------------------
  679. self.train_transform, self.trans_cfg = build_transform(
  680. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  681. self.val_transform, _ = build_transform(
  682. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  683. # ---------------------------- Build Dataset & Dataloader ----------------------------
  684. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  685. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  686. # ---------------------------- Build Evaluator ----------------------------
  687. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  688. # ---------------------------- Build Grad. Scaler ----------------------------
  689. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  690. # ---------------------------- Build Optimizer ----------------------------
  691. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  692. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  693. # ---------------------------- Build LR Scheduler ----------------------------
  694. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  695. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  696. if self.args.resume and self.args.resume != 'None':
  697. self.lr_scheduler.step()
  698. # ---------------------------- Build Model-EMA ----------------------------
  699. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  700. print('Build ModelEMA ...')
  701. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  702. else:
  703. self.model_ema = None
  704. def train(self, model):
  705. for epoch in range(self.start_epoch, self.args.max_epoch):
  706. if self.args.distributed:
  707. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  708. # check second stage
  709. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  710. self.check_second_stage()
  711. # save model of the last mosaic epoch
  712. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  713. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  714. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  715. torch.save({'model': model.state_dict(),
  716. 'mAP': round(self.evaluator.map*100, 1),
  717. 'optimizer': self.optimizer.state_dict(),
  718. 'epoch': self.epoch,
  719. 'args': self.args},
  720. checkpoint_path)
  721. # check third stage
  722. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  723. self.check_third_stage()
  724. # save model of the last mosaic epoch
  725. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  726. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  727. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  728. torch.save({'model': model.state_dict(),
  729. 'mAP': round(self.evaluator.map*100, 1),
  730. 'optimizer': self.optimizer.state_dict(),
  731. 'epoch': self.epoch,
  732. 'args': self.args},
  733. checkpoint_path)
  734. # train one epoch
  735. self.epoch = epoch
  736. self.train_one_epoch(model)
  737. # eval one epoch
  738. if self.heavy_eval:
  739. model_eval = model.module if self.args.distributed else model
  740. self.eval(model_eval)
  741. else:
  742. model_eval = model.module if self.args.distributed else model
  743. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  744. self.eval(model_eval)
  745. if self.args.debug:
  746. print("For debug mode, we only train 1 epoch")
  747. break
  748. def eval(self, model):
  749. # chech model
  750. model_eval = model if self.model_ema is None else self.model_ema.ema
  751. if distributed_utils.is_main_process():
  752. # check evaluator
  753. if self.evaluator is None:
  754. print('No evaluator ... save model and go on training.')
  755. print('Saving state, epoch: {}'.format(self.epoch))
  756. weight_name = '{}_no_eval.pth'.format(self.args.model)
  757. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  758. torch.save({'model': model_eval.state_dict(),
  759. 'mAP': -1.,
  760. 'optimizer': self.optimizer.state_dict(),
  761. 'epoch': self.epoch,
  762. 'args': self.args},
  763. checkpoint_path)
  764. else:
  765. print('eval ...')
  766. # set eval mode
  767. model_eval.trainable = False
  768. model_eval.eval()
  769. # evaluate
  770. with torch.no_grad():
  771. self.evaluator.evaluate(model_eval)
  772. # save model
  773. cur_map = self.evaluator.map
  774. if cur_map > self.best_map:
  775. # update best-map
  776. self.best_map = cur_map
  777. # save model
  778. print('Saving state, epoch:', self.epoch)
  779. weight_name = '{}_best.pth'.format(self.args.model)
  780. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  781. torch.save({'model': model_eval.state_dict(),
  782. 'mAP': round(self.best_map*100, 1),
  783. 'optimizer': self.optimizer.state_dict(),
  784. 'epoch': self.epoch,
  785. 'args': self.args},
  786. checkpoint_path)
  787. # set train mode.
  788. model_eval.trainable = True
  789. model_eval.train()
  790. if self.args.distributed:
  791. # wait for all processes to synchronize
  792. dist.barrier()
  793. def train_one_epoch(self, model):
  794. # basic parameters
  795. epoch_size = len(self.train_loader)
  796. img_size = self.args.img_size
  797. t0 = time.time()
  798. nw = epoch_size * self.args.wp_epoch
  799. # Train one epoch
  800. for iter_i, (images, targets) in enumerate(self.train_loader):
  801. ni = iter_i + self.epoch * epoch_size
  802. # Warmup
  803. if ni <= nw:
  804. xi = [0, nw] # x interp
  805. for j, x in enumerate(self.optimizer.param_groups):
  806. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  807. x['lr'] = np.interp(
  808. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  809. if 'momentum' in x:
  810. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  811. # To device
  812. images = images.to(self.device, non_blocking=True).float() / 255.
  813. # Multi scale
  814. if self.args.multi_scale:
  815. images, targets, img_size = self.rescale_image_targets(
  816. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  817. else:
  818. targets = self.refine_targets(targets, self.args.min_box_size)
  819. # Visualize train targets
  820. if self.args.vis_tgt:
  821. vis_data(images*255, targets)
  822. # Inference
  823. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  824. outputs = model(images)
  825. # Compute loss
  826. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  827. losses = loss_dict['losses']
  828. # Grad Accumulate
  829. if self.grad_accumulate > 1:
  830. losses /= self.grad_accumulate
  831. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  832. # Backward
  833. self.scaler.scale(losses).backward()
  834. # Optimize
  835. if ni % self.grad_accumulate == 0:
  836. grad_norm = None
  837. if self.clip_grad > 0:
  838. # unscale gradients
  839. self.scaler.unscale_(self.optimizer)
  840. # clip gradients
  841. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  842. # optimizer.step
  843. self.scaler.step(self.optimizer)
  844. self.scaler.update()
  845. self.optimizer.zero_grad()
  846. # ema
  847. if self.model_ema is not None:
  848. self.model_ema.update(model)
  849. # Logs
  850. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  851. t1 = time.time()
  852. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  853. # basic infor
  854. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  855. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  856. log += '[lr: {:.6f}]'.format(cur_lr[2])
  857. # loss infor
  858. for k in loss_dict_reduced.keys():
  859. loss_val = loss_dict_reduced[k]
  860. if k == 'losses':
  861. loss_val *= self.grad_accumulate
  862. log += '[{}: {:.2f}]'.format(k, loss_val)
  863. # other infor
  864. log += '[grad_norm: {:.2f}]'.format(grad_norm)
  865. log += '[time: {:.2f}]'.format(t1 - t0)
  866. log += '[size: {}]'.format(img_size)
  867. # print log infor
  868. print(log, flush=True)
  869. t0 = time.time()
  870. if self.args.debug:
  871. print("For debug mode, we only train 1 iteration")
  872. break
  873. # LR Schedule
  874. if not self.second_stage:
  875. self.lr_scheduler.step()
  876. def refine_targets(self, targets, min_box_size):
  877. # rescale targets
  878. for tgt in targets:
  879. boxes = tgt["boxes"].clone()
  880. labels = tgt["labels"].clone()
  881. # refine tgt
  882. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  883. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  884. keep = (min_tgt_size >= min_box_size)
  885. tgt["boxes"] = boxes[keep]
  886. tgt["labels"] = labels[keep]
  887. return targets
  888. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  889. """
  890. Deployed for Multi scale trick.
  891. """
  892. if isinstance(stride, int):
  893. max_stride = stride
  894. elif isinstance(stride, list):
  895. max_stride = max(stride)
  896. # During training phase, the shape of input image is square.
  897. old_img_size = images.shape[-1]
  898. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  899. new_img_size = new_img_size // max_stride * max_stride # size
  900. if new_img_size / old_img_size != 1:
  901. # interpolate
  902. images = torch.nn.functional.interpolate(
  903. input=images,
  904. size=new_img_size,
  905. mode='bilinear',
  906. align_corners=False)
  907. # rescale targets
  908. for tgt in targets:
  909. boxes = tgt["boxes"].clone()
  910. labels = tgt["labels"].clone()
  911. boxes = torch.clamp(boxes, 0, old_img_size)
  912. # rescale box
  913. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  914. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  915. # refine tgt
  916. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  917. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  918. keep = (min_tgt_size >= min_box_size)
  919. tgt["boxes"] = boxes[keep]
  920. tgt["labels"] = labels[keep]
  921. return images, targets, new_img_size
  922. def check_second_stage(self):
  923. # set second stage
  924. print('============== Second stage of Training ==============')
  925. self.second_stage = True
  926. # close mosaic augmentation
  927. if self.train_loader.dataset.mosaic_prob > 0.:
  928. print(' - Close < Mosaic Augmentation > ...')
  929. self.train_loader.dataset.mosaic_prob = 0.
  930. self.heavy_eval = True
  931. # close mixup augmentation
  932. if self.train_loader.dataset.mixup_prob > 0.:
  933. print(' - Close < Mixup Augmentation > ...')
  934. self.train_loader.dataset.mixup_prob = 0.
  935. self.heavy_eval = True
  936. # close rotation augmentation
  937. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  938. print(' - Close < degress of rotation > ...')
  939. self.trans_cfg['degrees'] = 0.0
  940. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  941. print(' - Close < shear of rotation >...')
  942. self.trans_cfg['shear'] = 0.0
  943. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  944. print(' - Close < perspective of rotation > ...')
  945. self.trans_cfg['perspective'] = 0.0
  946. # build a new transform for second stage
  947. print(' - Rebuild transforms ...')
  948. self.train_transform, self.trans_cfg = build_transform(
  949. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  950. self.train_loader.dataset.transform = self.train_transform
  951. def check_third_stage(self):
  952. # set third stage
  953. print('============== Third stage of Training ==============')
  954. self.third_stage = True
  955. # close random affine
  956. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  957. print(' - Close < translate of affine > ...')
  958. self.trans_cfg['translate'] = 0.0
  959. if 'scale' in self.trans_cfg.keys():
  960. print(' - Close < scale of affine >...')
  961. self.trans_cfg['scale'] = [1.0, 1.0]
  962. # build a new transform for second stage
  963. print(' - Rebuild transforms ...')
  964. self.train_transform, self.trans_cfg = build_transform(
  965. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  966. self.train_loader.dataset.transform = self.train_transform
  967. ## RTRDet Trainer
  968. class RTRTrainer(object):
  969. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  970. # ------------------- Basic parameters -------------------
  971. self.args = args
  972. self.epoch = 0
  973. self.best_map = -1.
  974. self.device = device
  975. self.criterion = criterion
  976. self.world_size = world_size
  977. self.grad_accumulate = args.grad_accumulate
  978. self.clip_grad = 35
  979. self.heavy_eval = False
  980. # weak augmentatino stage
  981. self.second_stage = False
  982. self.third_stage = False
  983. self.second_stage_epoch = args.no_aug_epoch
  984. self.third_stage_epoch = args.no_aug_epoch // 2
  985. # path to save model
  986. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  987. os.makedirs(self.path_to_save, exist_ok=True)
  988. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  989. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
  990. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  991. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  992. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  993. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  994. self.data_cfg = data_cfg
  995. self.model_cfg = model_cfg
  996. self.trans_cfg = trans_cfg
  997. # ---------------------------- Build Transform ----------------------------
  998. self.train_transform, self.trans_cfg = build_transform(
  999. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1000. self.val_transform, _ = build_transform(
  1001. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1002. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1003. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1004. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1005. # ---------------------------- Build Evaluator ----------------------------
  1006. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1007. # ---------------------------- Build Grad. Scaler ----------------------------
  1008. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1009. # ---------------------------- Build Optimizer ----------------------------
  1010. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  1011. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  1012. # ---------------------------- Build LR Scheduler ----------------------------
  1013. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1014. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1015. if self.args.resume and self.args.resume != 'None':
  1016. self.lr_scheduler.step()
  1017. # ---------------------------- Build Model-EMA ----------------------------
  1018. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1019. print('Build ModelEMA ...')
  1020. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1021. else:
  1022. self.model_ema = None
  1023. def train(self, model):
  1024. for epoch in range(self.start_epoch, self.args.max_epoch):
  1025. if self.args.distributed:
  1026. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1027. # check second stage
  1028. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1029. self.check_second_stage()
  1030. # save model of the last mosaic epoch
  1031. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1032. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1033. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1034. torch.save({'model': model.state_dict(),
  1035. 'mAP': round(self.evaluator.map*100, 1),
  1036. 'optimizer': self.optimizer.state_dict(),
  1037. 'epoch': self.epoch,
  1038. 'args': self.args},
  1039. checkpoint_path)
  1040. # check third stage
  1041. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1042. self.check_third_stage()
  1043. # save model of the last mosaic epoch
  1044. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1045. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1046. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1047. torch.save({'model': model.state_dict(),
  1048. 'mAP': round(self.evaluator.map*100, 1),
  1049. 'optimizer': self.optimizer.state_dict(),
  1050. 'epoch': self.epoch,
  1051. 'args': self.args},
  1052. checkpoint_path)
  1053. # train one epoch
  1054. self.epoch = epoch
  1055. self.train_one_epoch(model)
  1056. # eval one epoch
  1057. if self.heavy_eval:
  1058. model_eval = model.module if self.args.distributed else model
  1059. self.eval(model_eval)
  1060. else:
  1061. model_eval = model.module if self.args.distributed else model
  1062. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1063. self.eval(model_eval)
  1064. def eval(self, model):
  1065. # chech model
  1066. model_eval = model if self.model_ema is None else self.model_ema.ema
  1067. if distributed_utils.is_main_process():
  1068. # check evaluator
  1069. if self.evaluator is None:
  1070. print('No evaluator ... save model and go on training.')
  1071. print('Saving state, epoch: {}'.format(self.epoch))
  1072. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1073. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1074. torch.save({'model': model_eval.state_dict(),
  1075. 'mAP': -1.,
  1076. 'optimizer': self.optimizer.state_dict(),
  1077. 'epoch': self.epoch,
  1078. 'args': self.args},
  1079. checkpoint_path)
  1080. else:
  1081. print('eval ...')
  1082. # set eval mode
  1083. model_eval.trainable = False
  1084. model_eval.eval()
  1085. # evaluate
  1086. with torch.no_grad():
  1087. self.evaluator.evaluate(model_eval)
  1088. # save model
  1089. cur_map = self.evaluator.map
  1090. if cur_map > self.best_map:
  1091. # update best-map
  1092. self.best_map = cur_map
  1093. # save model
  1094. print('Saving state, epoch:', self.epoch)
  1095. weight_name = '{}_best.pth'.format(self.args.model)
  1096. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1097. torch.save({'model': model_eval.state_dict(),
  1098. 'mAP': round(self.best_map*100, 1),
  1099. 'optimizer': self.optimizer.state_dict(),
  1100. 'epoch': self.epoch,
  1101. 'args': self.args},
  1102. checkpoint_path)
  1103. # set train mode.
  1104. model_eval.trainable = True
  1105. model_eval.train()
  1106. if self.args.distributed:
  1107. # wait for all processes to synchronize
  1108. dist.barrier()
  1109. def train_one_epoch(self, model):
  1110. # basic parameters
  1111. epoch_size = len(self.train_loader)
  1112. img_size = self.args.img_size
  1113. t0 = time.time()
  1114. nw = epoch_size * self.args.wp_epoch
  1115. # Train one epoch
  1116. for iter_i, (images, targets) in enumerate(self.train_loader):
  1117. ni = iter_i + self.epoch * epoch_size
  1118. # Warmup
  1119. if ni <= nw:
  1120. xi = [0, nw] # x interp
  1121. for j, x in enumerate(self.optimizer.param_groups):
  1122. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1123. x['lr'] = np.interp( ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  1124. if 'momentum' in x:
  1125. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1126. # To device
  1127. images = images.to(self.device, non_blocking=True).float() / 255.
  1128. # Multi scale
  1129. if self.args.multi_scale:
  1130. images, targets, img_size = self.rescale_image_targets(
  1131. images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1132. else:
  1133. targets = self.refine_targets(targets, self.args.min_box_size)
  1134. # Normalize bbox
  1135. targets = self.normalize_bbox(targets, img_size)
  1136. # Visualize train targets
  1137. if self.args.vis_tgt:
  1138. targets = self.denormalize_bbox(targets, img_size)
  1139. vis_data(images*255, targets)
  1140. # Inference
  1141. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1142. outputs = model(images)
  1143. # Compute loss
  1144. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  1145. losses = loss_dict['losses']
  1146. # Grad Accumulate
  1147. if self.grad_accumulate > 1:
  1148. losses /= self.grad_accumulate
  1149. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  1150. # Backward
  1151. self.scaler.scale(losses).backward()
  1152. # Optimize
  1153. if ni % self.grad_accumulate == 0:
  1154. grad_norm = None
  1155. if self.clip_grad > 0:
  1156. # unscale gradients
  1157. self.scaler.unscale_(self.optimizer)
  1158. # clip gradients
  1159. grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  1160. # optimizer.step
  1161. self.scaler.step(self.optimizer)
  1162. self.scaler.update()
  1163. self.optimizer.zero_grad()
  1164. # ema
  1165. if self.model_ema is not None:
  1166. self.model_ema.update(model)
  1167. # Logs
  1168. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1169. t1 = time.time()
  1170. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1171. # basic infor
  1172. log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
  1173. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1174. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1175. # loss infor
  1176. for k in loss_dict_reduced.keys():
  1177. loss_val = loss_dict_reduced[k]
  1178. if k == 'losses':
  1179. loss_val *= self.grad_accumulate
  1180. log += '[{}: {:.2f}]'.format(k, loss_val)
  1181. # other infor
  1182. log += '[grad_norm: {:.2f}]'.format(grad_norm)
  1183. log += '[time: {:.2f}]'.format(t1 - t0)
  1184. log += '[size: {}]'.format(img_size)
  1185. # print log infor
  1186. print(log, flush=True)
  1187. t0 = time.time()
  1188. # LR Schedule
  1189. if not self.second_stage:
  1190. self.lr_scheduler.step()
  1191. def refine_targets(self, targets, min_box_size):
  1192. # rescale targets
  1193. for tgt in targets:
  1194. boxes = tgt["boxes"].clone()
  1195. labels = tgt["labels"].clone()
  1196. # refine tgt
  1197. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1198. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1199. keep = (min_tgt_size >= min_box_size)
  1200. tgt["boxes"] = boxes[keep]
  1201. tgt["labels"] = labels[keep]
  1202. return targets
  1203. def normalize_bbox(self, targets, img_size):
  1204. # normalize targets
  1205. for tgt in targets:
  1206. tgt["boxes"] /= img_size
  1207. return targets
  1208. def denormalize_bbox(self, targets, img_size):
  1209. # normalize targets
  1210. for tgt in targets:
  1211. tgt["boxes"] *= img_size
  1212. return targets
  1213. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1214. """
  1215. Deployed for Multi scale trick.
  1216. """
  1217. if isinstance(stride, int):
  1218. max_stride = stride
  1219. elif isinstance(stride, list):
  1220. max_stride = max(stride)
  1221. # During training phase, the shape of input image is square.
  1222. old_img_size = images.shape[-1]
  1223. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1224. new_img_size = new_img_size // max_stride * max_stride # size
  1225. if new_img_size / old_img_size != 1:
  1226. # interpolate
  1227. images = torch.nn.functional.interpolate(
  1228. input=images,
  1229. size=new_img_size,
  1230. mode='bilinear',
  1231. align_corners=False)
  1232. # rescale targets
  1233. for tgt in targets:
  1234. boxes = tgt["boxes"].clone()
  1235. labels = tgt["labels"].clone()
  1236. boxes = torch.clamp(boxes, 0, old_img_size)
  1237. # rescale box
  1238. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1239. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1240. # refine tgt
  1241. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1242. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1243. keep = (min_tgt_size >= min_box_size)
  1244. tgt["boxes"] = boxes[keep]
  1245. tgt["labels"] = labels[keep]
  1246. return images, targets, new_img_size
  1247. def check_second_stage(self):
  1248. # set second stage
  1249. print('============== Second stage of Training ==============')
  1250. self.second_stage = True
  1251. # close mosaic augmentation
  1252. if self.train_loader.dataset.mosaic_prob > 0.:
  1253. print(' - Close < Mosaic Augmentation > ...')
  1254. self.train_loader.dataset.mosaic_prob = 0.
  1255. self.heavy_eval = True
  1256. # close mixup augmentation
  1257. if self.train_loader.dataset.mixup_prob > 0.:
  1258. print(' - Close < Mixup Augmentation > ...')
  1259. self.train_loader.dataset.mixup_prob = 0.
  1260. self.heavy_eval = True
  1261. # close rotation augmentation
  1262. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1263. print(' - Close < degress of rotation > ...')
  1264. self.trans_cfg['degrees'] = 0.0
  1265. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1266. print(' - Close < shear of rotation >...')
  1267. self.trans_cfg['shear'] = 0.0
  1268. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1269. print(' - Close < perspective of rotation > ...')
  1270. self.trans_cfg['perspective'] = 0.0
  1271. # build a new transform for second stage
  1272. print(' - Rebuild transforms ...')
  1273. self.train_transform, self.trans_cfg = build_transform(
  1274. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1275. self.train_loader.dataset.transform = self.train_transform
  1276. def check_third_stage(self):
  1277. # set third stage
  1278. print('============== Third stage of Training ==============')
  1279. self.third_stage = True
  1280. # close random affine
  1281. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1282. print(' - Close < translate of affine > ...')
  1283. self.trans_cfg['translate'] = 0.0
  1284. if 'scale' in self.trans_cfg.keys():
  1285. print(' - Close < scale of affine >...')
  1286. self.trans_cfg['scale'] = [1.0, 1.0]
  1287. # build a new transform for second stage
  1288. print(' - Rebuild transforms ...')
  1289. self.train_transform, self.trans_cfg = build_transform(
  1290. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1291. self.train_loader.dataset.transform = self.train_transform
  1292. # ----------------------- Det + Seg trainers -----------------------
  1293. ## RTCDet Trainer for Det + Seg
  1294. class RTCTrainerDS(object):
  1295. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1296. # ------------------- basic parameters -------------------
  1297. self.args = args
  1298. self.epoch = 0
  1299. self.best_map = -1.
  1300. self.device = device
  1301. self.criterion = criterion
  1302. self.world_size = world_size
  1303. self.grad_accumulate = args.grad_accumulate
  1304. self.clip_grad = 35
  1305. self.heavy_eval = False
  1306. # weak augmentatino stage
  1307. self.second_stage = False
  1308. self.third_stage = False
  1309. self.second_stage_epoch = args.no_aug_epoch
  1310. self.third_stage_epoch = args.no_aug_epoch // 2
  1311. # path to save model
  1312. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1313. os.makedirs(self.path_to_save, exist_ok=True)
  1314. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1315. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1316. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1317. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1318. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1319. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1320. self.data_cfg = data_cfg
  1321. self.model_cfg = model_cfg
  1322. self.trans_cfg = trans_cfg
  1323. # ---------------------------- Build Transform ----------------------------
  1324. self.train_transform, self.trans_cfg = build_transform(
  1325. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1326. self.val_transform, _ = build_transform(
  1327. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1328. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1329. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1330. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1331. # ---------------------------- Build Evaluator ----------------------------
  1332. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1333. # ---------------------------- Build Grad. Scaler ----------------------------
  1334. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1335. # ---------------------------- Build Optimizer ----------------------------
  1336. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1337. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1338. # ---------------------------- Build LR Scheduler ----------------------------
  1339. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1340. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1341. if self.args.resume and self.args.resume != 'None':
  1342. self.lr_scheduler.step()
  1343. # ---------------------------- Build Model-EMA ----------------------------
  1344. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1345. print('Build ModelEMA ...')
  1346. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1347. else:
  1348. self.model_ema = None
  1349. def train(self, model):
  1350. for epoch in range(self.start_epoch, self.args.max_epoch):
  1351. if self.args.distributed:
  1352. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1353. # check second stage
  1354. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1355. self.check_second_stage()
  1356. # save model of the last mosaic epoch
  1357. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1358. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1359. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1360. torch.save({'model': model.state_dict(),
  1361. 'mAP': round(self.evaluator.map*100, 1),
  1362. 'optimizer': self.optimizer.state_dict(),
  1363. 'epoch': self.epoch,
  1364. 'args': self.args},
  1365. checkpoint_path)
  1366. # check third stage
  1367. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1368. self.check_third_stage()
  1369. # save model of the last mosaic epoch
  1370. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1371. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1372. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1373. torch.save({'model': model.state_dict(),
  1374. 'mAP': round(self.evaluator.map*100, 1),
  1375. 'optimizer': self.optimizer.state_dict(),
  1376. 'epoch': self.epoch,
  1377. 'args': self.args},
  1378. checkpoint_path)
  1379. # train one epoch
  1380. self.epoch = epoch
  1381. self.train_one_epoch(model)
  1382. # eval one epoch
  1383. if self.heavy_eval:
  1384. model_eval = model.module if self.args.distributed else model
  1385. self.eval(model_eval)
  1386. else:
  1387. model_eval = model.module if self.args.distributed else model
  1388. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1389. self.eval(model_eval)
  1390. if self.args.debug:
  1391. print("For debug mode, we only train 1 epoch")
  1392. break
  1393. def eval(self, model):
  1394. # chech model
  1395. model_eval = model if self.model_ema is None else self.model_ema.ema
  1396. if distributed_utils.is_main_process():
  1397. # check evaluator
  1398. if self.evaluator is None:
  1399. print('No evaluator ... save model and go on training.')
  1400. print('Saving state, epoch: {}'.format(self.epoch))
  1401. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1402. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1403. torch.save({'model': model_eval.state_dict(),
  1404. 'mAP': -1.,
  1405. 'optimizer': self.optimizer.state_dict(),
  1406. 'epoch': self.epoch,
  1407. 'args': self.args},
  1408. checkpoint_path)
  1409. else:
  1410. print('eval ...')
  1411. # set eval mode
  1412. model_eval.trainable = False
  1413. model_eval.eval()
  1414. # evaluate
  1415. with torch.no_grad():
  1416. self.evaluator.evaluate(model_eval)
  1417. # save model
  1418. cur_map = self.evaluator.map
  1419. if cur_map > self.best_map:
  1420. # update best-map
  1421. self.best_map = cur_map
  1422. # save model
  1423. print('Saving state, epoch:', self.epoch)
  1424. weight_name = '{}_best.pth'.format(self.args.model)
  1425. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1426. torch.save({'model': model_eval.state_dict(),
  1427. 'mAP': round(self.best_map*100, 1),
  1428. 'optimizer': self.optimizer.state_dict(),
  1429. 'epoch': self.epoch,
  1430. 'args': self.args},
  1431. checkpoint_path)
  1432. # set train mode.
  1433. model_eval.trainable = True
  1434. model_eval.train()
  1435. if self.args.distributed:
  1436. # wait for all processes to synchronize
  1437. dist.barrier()
  1438. def train_one_epoch(self, model):
  1439. # basic parameters
  1440. epoch_size = len(self.train_loader)
  1441. img_size = self.args.img_size
  1442. t0 = time.time()
  1443. nw = epoch_size * self.args.wp_epoch
  1444. # Train one epoch
  1445. for iter_i, (images, targets) in enumerate(self.train_loader):
  1446. ni = iter_i + self.epoch * epoch_size
  1447. # Warmup
  1448. if ni <= nw:
  1449. xi = [0, nw] # x interp
  1450. for j, x in enumerate(self.optimizer.param_groups):
  1451. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1452. x['lr'] = np.interp(
  1453. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1454. if 'momentum' in x:
  1455. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1456. # To device
  1457. images = images.to(self.device, non_blocking=True).float() / 255.
  1458. # Multi scale
  1459. if self.args.multi_scale:
  1460. images, targets, img_size = self.rescale_image_targets(
  1461. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1462. else:
  1463. targets = self.refine_targets(targets, self.args.min_box_size)
  1464. # Visualize train targets
  1465. if self.args.vis_tgt:
  1466. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1467. # Inference
  1468. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1469. outputs = model(images)
  1470. # Compute loss
  1471. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
  1472. det_loss_dict = loss_dict['det_loss_dict']
  1473. seg_loss_dict = loss_dict['seg_loss_dict']
  1474. # TODO: finish the backward + optimize
  1475. if self.args.debug:
  1476. print("For debug mode, we only train 1 iteration")
  1477. break
  1478. # LR Schedule
  1479. if not self.second_stage:
  1480. self.lr_scheduler.step()
  1481. def refine_targets(self, targets, min_box_size):
  1482. # rescale targets
  1483. for tgt in targets:
  1484. boxes = tgt["boxes"].clone()
  1485. labels = tgt["labels"].clone()
  1486. # refine tgt
  1487. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1488. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1489. keep = (min_tgt_size >= min_box_size)
  1490. tgt["boxes"] = boxes[keep]
  1491. tgt["labels"] = labels[keep]
  1492. return targets
  1493. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1494. """
  1495. Deployed for Multi scale trick.
  1496. """
  1497. if isinstance(stride, int):
  1498. max_stride = stride
  1499. elif isinstance(stride, list):
  1500. max_stride = max(stride)
  1501. # During training phase, the shape of input image is square.
  1502. old_img_size = images.shape[-1]
  1503. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1504. new_img_size = new_img_size // max_stride * max_stride # size
  1505. if new_img_size / old_img_size != 1:
  1506. # interpolate
  1507. images = torch.nn.functional.interpolate(
  1508. input=images,
  1509. size=new_img_size,
  1510. mode='bilinear',
  1511. align_corners=False)
  1512. # rescale targets
  1513. for tgt in targets:
  1514. boxes = tgt["boxes"].clone()
  1515. labels = tgt["labels"].clone()
  1516. boxes = torch.clamp(boxes, 0, old_img_size)
  1517. # rescale box
  1518. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1519. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1520. # refine tgt
  1521. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1522. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1523. keep = (min_tgt_size >= min_box_size)
  1524. tgt["boxes"] = boxes[keep]
  1525. tgt["labels"] = labels[keep]
  1526. return images, targets, new_img_size
  1527. def check_second_stage(self):
  1528. # set second stage
  1529. print('============== Second stage of Training ==============')
  1530. self.second_stage = True
  1531. # close mosaic augmentation
  1532. if self.train_loader.dataset.mosaic_prob > 0.:
  1533. print(' - Close < Mosaic Augmentation > ...')
  1534. self.train_loader.dataset.mosaic_prob = 0.
  1535. self.heavy_eval = True
  1536. # close mixup augmentation
  1537. if self.train_loader.dataset.mixup_prob > 0.:
  1538. print(' - Close < Mixup Augmentation > ...')
  1539. self.train_loader.dataset.mixup_prob = 0.
  1540. self.heavy_eval = True
  1541. # close rotation augmentation
  1542. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1543. print(' - Close < degress of rotation > ...')
  1544. self.trans_cfg['degrees'] = 0.0
  1545. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1546. print(' - Close < shear of rotation >...')
  1547. self.trans_cfg['shear'] = 0.0
  1548. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1549. print(' - Close < perspective of rotation > ...')
  1550. self.trans_cfg['perspective'] = 0.0
  1551. # build a new transform for second stage
  1552. print(' - Rebuild transforms ...')
  1553. self.train_transform, self.trans_cfg = build_transform(
  1554. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1555. self.train_loader.dataset.transform = self.train_transform
  1556. def check_third_stage(self):
  1557. # set third stage
  1558. print('============== Third stage of Training ==============')
  1559. self.third_stage = True
  1560. # close random affine
  1561. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1562. print(' - Close < translate of affine > ...')
  1563. self.trans_cfg['translate'] = 0.0
  1564. if 'scale' in self.trans_cfg.keys():
  1565. print(' - Close < scale of affine >...')
  1566. self.trans_cfg['scale'] = [1.0, 1.0]
  1567. # build a new transform for second stage
  1568. print(' - Rebuild transforms ...')
  1569. self.train_transform, self.trans_cfg = build_transform(
  1570. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1571. self.train_loader.dataset.transform = self.train_transform
  1572. # ----------------------- Det + Seg + Pos trainers -----------------------
  1573. ## RTCDet Trainer for Det + Seg + HumanPose
  1574. class RTCTrainerDSP(object):
  1575. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1576. # ------------------- basic parameters -------------------
  1577. self.args = args
  1578. self.epoch = 0
  1579. self.best_map = -1.
  1580. self.device = device
  1581. self.criterion = criterion
  1582. self.world_size = world_size
  1583. self.grad_accumulate = args.grad_accumulate
  1584. self.clip_grad = 35
  1585. self.heavy_eval = False
  1586. # weak augmentatino stage
  1587. self.second_stage = False
  1588. self.third_stage = False
  1589. self.second_stage_epoch = args.no_aug_epoch
  1590. self.third_stage_epoch = args.no_aug_epoch // 2
  1591. # path to save model
  1592. self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
  1593. os.makedirs(self.path_to_save, exist_ok=True)
  1594. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  1595. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  1596. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  1597. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  1598. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  1599. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  1600. self.data_cfg = data_cfg
  1601. self.model_cfg = model_cfg
  1602. self.trans_cfg = trans_cfg
  1603. # ---------------------------- Build Transform ----------------------------
  1604. self.train_transform, self.trans_cfg = build_transform(
  1605. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1606. self.val_transform, _ = build_transform(
  1607. args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  1608. # ---------------------------- Build Dataset & Dataloader ----------------------------
  1609. self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  1610. self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  1611. # ---------------------------- Build Evaluator ----------------------------
  1612. self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
  1613. # ---------------------------- Build Grad. Scaler ----------------------------
  1614. self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
  1615. # ---------------------------- Build Optimizer ----------------------------
  1616. self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
  1617. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
  1618. # ---------------------------- Build LR Scheduler ----------------------------
  1619. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
  1620. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  1621. if self.args.resume and self.args.resume != 'None':
  1622. self.lr_scheduler.step()
  1623. # ---------------------------- Build Model-EMA ----------------------------
  1624. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  1625. print('Build ModelEMA ...')
  1626. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  1627. else:
  1628. self.model_ema = None
  1629. def train(self, model):
  1630. for epoch in range(self.start_epoch, self.args.max_epoch):
  1631. if self.args.distributed:
  1632. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  1633. # check second stage
  1634. if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
  1635. self.check_second_stage()
  1636. # save model of the last mosaic epoch
  1637. weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
  1638. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1639. print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
  1640. torch.save({'model': model.state_dict(),
  1641. 'mAP': round(self.evaluator.map*100, 1),
  1642. 'optimizer': self.optimizer.state_dict(),
  1643. 'epoch': self.epoch,
  1644. 'args': self.args},
  1645. checkpoint_path)
  1646. # check third stage
  1647. if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
  1648. self.check_third_stage()
  1649. # save model of the last mosaic epoch
  1650. weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
  1651. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1652. print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
  1653. torch.save({'model': model.state_dict(),
  1654. 'mAP': round(self.evaluator.map*100, 1),
  1655. 'optimizer': self.optimizer.state_dict(),
  1656. 'epoch': self.epoch,
  1657. 'args': self.args},
  1658. checkpoint_path)
  1659. # train one epoch
  1660. self.epoch = epoch
  1661. self.train_one_epoch(model)
  1662. # eval one epoch
  1663. if self.heavy_eval:
  1664. model_eval = model.module if self.args.distributed else model
  1665. self.eval(model_eval)
  1666. else:
  1667. model_eval = model.module if self.args.distributed else model
  1668. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  1669. self.eval(model_eval)
  1670. if self.args.debug:
  1671. print("For debug mode, we only train 1 epoch")
  1672. break
  1673. def eval(self, model):
  1674. # chech model
  1675. model_eval = model if self.model_ema is None else self.model_ema.ema
  1676. if distributed_utils.is_main_process():
  1677. # check evaluator
  1678. if self.evaluator is None:
  1679. print('No evaluator ... save model and go on training.')
  1680. print('Saving state, epoch: {}'.format(self.epoch))
  1681. weight_name = '{}_no_eval.pth'.format(self.args.model)
  1682. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1683. torch.save({'model': model_eval.state_dict(),
  1684. 'mAP': -1.,
  1685. 'optimizer': self.optimizer.state_dict(),
  1686. 'epoch': self.epoch,
  1687. 'args': self.args},
  1688. checkpoint_path)
  1689. else:
  1690. print('eval ...')
  1691. # set eval mode
  1692. model_eval.trainable = False
  1693. model_eval.eval()
  1694. # evaluate
  1695. with torch.no_grad():
  1696. self.evaluator.evaluate(model_eval)
  1697. # save model
  1698. cur_map = self.evaluator.map
  1699. if cur_map > self.best_map:
  1700. # update best-map
  1701. self.best_map = cur_map
  1702. # save model
  1703. print('Saving state, epoch:', self.epoch)
  1704. weight_name = '{}_best.pth'.format(self.args.model)
  1705. checkpoint_path = os.path.join(self.path_to_save, weight_name)
  1706. torch.save({'model': model_eval.state_dict(),
  1707. 'mAP': round(self.best_map*100, 1),
  1708. 'optimizer': self.optimizer.state_dict(),
  1709. 'epoch': self.epoch,
  1710. 'args': self.args},
  1711. checkpoint_path)
  1712. # set train mode.
  1713. model_eval.trainable = True
  1714. model_eval.train()
  1715. if self.args.distributed:
  1716. # wait for all processes to synchronize
  1717. dist.barrier()
  1718. def train_one_epoch(self, model):
  1719. # basic parameters
  1720. epoch_size = len(self.train_loader)
  1721. img_size = self.args.img_size
  1722. t0 = time.time()
  1723. nw = epoch_size * self.args.wp_epoch
  1724. # Train one epoch
  1725. for iter_i, (images, targets) in enumerate(self.train_loader):
  1726. ni = iter_i + self.epoch * epoch_size
  1727. # Warmup
  1728. if ni <= nw:
  1729. xi = [0, nw] # x interp
  1730. for j, x in enumerate(self.optimizer.param_groups):
  1731. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  1732. x['lr'] = np.interp(
  1733. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  1734. if 'momentum' in x:
  1735. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  1736. # To device
  1737. images = images.to(self.device, non_blocking=True).float() / 255.
  1738. # Multi scale
  1739. if self.args.multi_scale:
  1740. images, targets, img_size = self.rescale_image_targets(
  1741. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  1742. else:
  1743. targets = self.refine_targets(targets, self.args.min_box_size)
  1744. # Visualize train targets
  1745. if self.args.vis_tgt:
  1746. vis_data(images*255, targets, self.data_cfg['num_classes'])
  1747. # Inference
  1748. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  1749. outputs = model(images)
  1750. # Compute loss
  1751. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
  1752. det_loss_dict = loss_dict['det_loss_dict']
  1753. seg_loss_dict = loss_dict['seg_loss_dict']
  1754. pos_loss_dict = loss_dict['pos_loss_dict']
  1755. # TODO: finish the backward + optimize
  1756. if self.args.debug:
  1757. print("For debug mode, we only train 1 iteration")
  1758. break
  1759. # LR Schedule
  1760. if not self.second_stage:
  1761. self.lr_scheduler.step()
  1762. def refine_targets(self, targets, min_box_size):
  1763. # rescale targets
  1764. for tgt in targets:
  1765. boxes = tgt["boxes"].clone()
  1766. labels = tgt["labels"].clone()
  1767. # refine tgt
  1768. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1769. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1770. keep = (min_tgt_size >= min_box_size)
  1771. tgt["boxes"] = boxes[keep]
  1772. tgt["labels"] = labels[keep]
  1773. return targets
  1774. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1775. """
  1776. Deployed for Multi scale trick.
  1777. """
  1778. if isinstance(stride, int):
  1779. max_stride = stride
  1780. elif isinstance(stride, list):
  1781. max_stride = max(stride)
  1782. # During training phase, the shape of input image is square.
  1783. old_img_size = images.shape[-1]
  1784. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1785. new_img_size = new_img_size // max_stride * max_stride # size
  1786. if new_img_size / old_img_size != 1:
  1787. # interpolate
  1788. images = torch.nn.functional.interpolate(
  1789. input=images,
  1790. size=new_img_size,
  1791. mode='bilinear',
  1792. align_corners=False)
  1793. # rescale targets
  1794. for tgt in targets:
  1795. boxes = tgt["boxes"].clone()
  1796. labels = tgt["labels"].clone()
  1797. boxes = torch.clamp(boxes, 0, old_img_size)
  1798. # rescale box
  1799. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1800. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1801. # refine tgt
  1802. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1803. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1804. keep = (min_tgt_size >= min_box_size)
  1805. tgt["boxes"] = boxes[keep]
  1806. tgt["labels"] = labels[keep]
  1807. return images, targets, new_img_size
  1808. def check_second_stage(self):
  1809. # set second stage
  1810. print('============== Second stage of Training ==============')
  1811. self.second_stage = True
  1812. # close mosaic augmentation
  1813. if self.train_loader.dataset.mosaic_prob > 0.:
  1814. print(' - Close < Mosaic Augmentation > ...')
  1815. self.train_loader.dataset.mosaic_prob = 0.
  1816. self.heavy_eval = True
  1817. # close mixup augmentation
  1818. if self.train_loader.dataset.mixup_prob > 0.:
  1819. print(' - Close < Mixup Augmentation > ...')
  1820. self.train_loader.dataset.mixup_prob = 0.
  1821. self.heavy_eval = True
  1822. # close rotation augmentation
  1823. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  1824. print(' - Close < degress of rotation > ...')
  1825. self.trans_cfg['degrees'] = 0.0
  1826. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  1827. print(' - Close < shear of rotation >...')
  1828. self.trans_cfg['shear'] = 0.0
  1829. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  1830. print(' - Close < perspective of rotation > ...')
  1831. self.trans_cfg['perspective'] = 0.0
  1832. # build a new transform for second stage
  1833. print(' - Rebuild transforms ...')
  1834. self.train_transform, self.trans_cfg = build_transform(
  1835. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1836. self.train_loader.dataset.transform = self.train_transform
  1837. def check_third_stage(self):
  1838. # set third stage
  1839. print('============== Third stage of Training ==============')
  1840. self.third_stage = True
  1841. # close random affine
  1842. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  1843. print(' - Close < translate of affine > ...')
  1844. self.trans_cfg['translate'] = 0.0
  1845. if 'scale' in self.trans_cfg.keys():
  1846. print(' - Close < scale of affine >...')
  1847. self.trans_cfg['scale'] = [1.0, 1.0]
  1848. # build a new transform for second stage
  1849. print(' - Rebuild transforms ...')
  1850. self.train_transform, self.trans_cfg = build_transform(
  1851. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  1852. self.train_loader.dataset.transform = self.train_transform
  1853. # Build Trainer
  1854. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1855. # ----------------------- Det trainers -----------------------
  1856. if model_cfg['trainer_type'] == 'yolov8':
  1857. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1858. elif model_cfg['trainer_type'] == 'yolox':
  1859. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1860. elif model_cfg['trainer_type'] == 'rtcdet':
  1861. return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1862. elif model_cfg['trainer_type'] == 'rtrdet':
  1863. return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1864. # ----------------------- Det + Seg trainers -----------------------
  1865. elif model_cfg['trainer_type'] == 'rtcdet_ds':
  1866. return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1867. # ----------------------- Det + Seg + Pos trainers -----------------------
  1868. elif model_cfg['trainer_type'] == 'rtcdet_dsp':
  1869. return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1870. else:
  1871. raise NotImplementedError(model_cfg['trainer_type'])