| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197 |
- import torch
- import torch.distributed as dist
- import time
- import os
- import numpy as np
- import random
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import ModelEMA, CollateFunc, build_dataloader
- from utils.vis_tools import vis_data
- # ----------------- Evaluator Components -----------------
- from evaluator.build import build_evluator
- # ----------------- Optimizer & LrScheduler Components -----------------
- from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
- from utils.solver.lr_scheduler import build_lr_scheduler
- # ----------------- Dataset Components -----------------
- from dataset.build import build_dataset, build_transform
- # ----------------------- Det trainers -----------------------
- ## YOLOv8 Trainer
- class Yolov8Trainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.heavy_eval = False
- self.last_opt_step = 0
- self.clip_grad = 10
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- accumulate = max(1, round(64 / self.args.batch_size))
- print('Grad Accumulate: {}'.format(accumulate))
- self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- accumulate = accumulate = max(1, round(64 / self.args.batch_size))
- # train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # to device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- losses *= images.shape[0] # loss * bs
- # reduce
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # gradient averaged between devices in DDP mode
- losses *= distributed_utils.get_world_size()
- # backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni - self.last_opt_step >= accumulate:
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- self.last_opt_step = ni
- # display
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## YOLOX Trainer
- class YoloxTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.no_aug_epoch = args.no_aug_epoch
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
-
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale and ni % 10 == 0:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accu
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## RTCDet Trainer
- class RTCTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[grad_norm: {:.2f}]'.format(grad_norm)
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- ## RTRDet Trainer
- class RTRTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- Basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
- self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp( ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
- # Normalize bbox
- targets = self.normalize_bbox(targets, img_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- targets = self.denormalize_bbox(targets, img_size)
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[0])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[grad_norm: {:.2f}]'.format(grad_norm)
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def normalize_bbox(self, targets, img_size):
- # normalize targets
- for tgt in targets:
- tgt["boxes"] /= img_size
-
- return targets
- def denormalize_bbox(self, targets, img_size):
- # normalize targets
- for tgt in targets:
- tgt["boxes"] *= img_size
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- # ----------------------- Det + Seg trainers -----------------------
- ## RTCDet Trainer for Det + Seg
- class RTCTrainerDS(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets, self.data_cfg['num_classes'])
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
- det_loss_dict = loss_dict['det_loss_dict']
- seg_loss_dict = loss_dict['seg_loss_dict']
- # TODO: finish the backward + optimize
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- # ----------------------- Det + Seg + Pos trainers -----------------------
- ## RTCDet Trainer for Det + Seg + HumanPose
- class RTCTrainerDSP(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float() / 255.
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets, self.data_cfg['num_classes'])
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
- det_loss_dict = loss_dict['det_loss_dict']
- seg_loss_dict = loss_dict['seg_loss_dict']
- pos_loss_dict = loss_dict['pos_loss_dict']
-
- # TODO: finish the backward + optimize
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- # Build Trainer
- def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ----------------------- Det trainers -----------------------
- if model_cfg['trainer_type'] == 'yolov8':
- return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'yolox':
- return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtcdet':
- return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtrdet':
- return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
-
- # ----------------------- Det + Seg trainers -----------------------
- elif model_cfg['trainer_type'] == 'rtcdet_ds':
- return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- # ----------------------- Det + Seg + Pos trainers -----------------------
- elif model_cfg['trainer_type'] == 'rtcdet_dsp':
- return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- else:
- raise NotImplementedError(model_cfg['trainer_type'])
-
|