engine.py 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. from utils import distributed_utils
  8. from utils.vis_tools import vis_data
  9. class Trainer(object):
  10. def __init__(self, args, device, cfg, model_ema, optimizer, lf, lr_scheduler, criterion, scaler):
  11. # ------------------- basic parameters -------------------
  12. self.args = args
  13. self.cfg = cfg
  14. self.device = device
  15. self.epoch = 0
  16. self.best_map = -1.
  17. # ------------------- core modules -------------------
  18. self.model_ema = model_ema
  19. self.optimizer = optimizer
  20. self.lf = lf
  21. self.lr_scheduler = lr_scheduler
  22. self.criterion = criterion
  23. self.scaler = scaler
  24. self.last_opt_step = 0
  25. def train_one_epoch(self, model, train_loader):
  26. # basic parameters
  27. epoch_size = len(train_loader)
  28. img_size = self.args.img_size
  29. t0 = time.time()
  30. nw = epoch_size * self.args.wp_epoch
  31. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  32. # train one epoch
  33. for iter_i, (images, targets) in enumerate(train_loader):
  34. ni = iter_i + self.epoch * epoch_size
  35. # Warmup
  36. if ni <= nw:
  37. xi = [0, nw] # x interp
  38. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  39. for j, x in enumerate(self.optimizer.param_groups):
  40. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  41. x['lr'] = np.interp(
  42. ni, xi, [self.cfg['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  43. if 'momentum' in x:
  44. x['momentum'] = np.interp(ni, xi, [self.cfg['warmup_momentum'], self.cfg['momentum']])
  45. # to device
  46. images = images.to(self.device, non_blocking=True).float() / 255.
  47. # multi scale
  48. if self.args.multi_scale:
  49. images, targets, img_size = self.rescale_image_targets(
  50. images, targets, model.stride, self.args.min_box_size, self.cfg['multi_scale'])
  51. else:
  52. targets = self.refine_targets(targets, self.args.min_box_size)
  53. # visualize train targets
  54. if self.args.vis_tgt:
  55. vis_data(images*255, targets)
  56. # inference
  57. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  58. outputs = model(images)
  59. # loss
  60. loss_dict = self.criterion(outputs=outputs, targets=targets)
  61. losses = loss_dict['losses']
  62. losses *= images.shape[0] # loss * bs
  63. # reduce
  64. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  65. if self.args.distributed:
  66. # gradient averaged between devices in DDP mode
  67. losses *= distributed_utils.get_world_size()
  68. # check loss
  69. try:
  70. if torch.isnan(losses):
  71. print('loss is NAN !!')
  72. continue
  73. except:
  74. print(loss_dict)
  75. # backward
  76. self.scaler.scale(losses).backward()
  77. # Optimize
  78. if ni - self.last_opt_step >= accumulate:
  79. if self.cfg['clip_grad'] > 0:
  80. # unscale gradients
  81. self.scaler.unscale_(self.optimizer)
  82. # clip gradients
  83. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.cfg['clip_grad'])
  84. # optimizer.step
  85. self.scaler.step(self.optimizer)
  86. self.scaler.update()
  87. self.optimizer.zero_grad()
  88. # ema
  89. if self.model_ema is not None:
  90. self.model_ema.update(model)
  91. self.last_opt_step = ni
  92. # display
  93. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  94. t1 = time.time()
  95. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  96. # basic infor
  97. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  98. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  99. log += '[lr: {:.6f}]'.format(cur_lr[2])
  100. # loss infor
  101. for k in loss_dict_reduced.keys():
  102. if k == 'losses' and self.args.distributed:
  103. world_size = distributed_utils.get_world_size()
  104. log += '[{}: {:.2f}]'.format(k, loss_dict[k] / world_size)
  105. else:
  106. log += '[{}: {:.2f}]'.format(k, loss_dict[k])
  107. # other infor
  108. log += '[time: {:.2f}]'.format(t1 - t0)
  109. log += '[size: {}]'.format(img_size)
  110. # print log infor
  111. print(log, flush=True)
  112. t0 = time.time()
  113. self.lr_scheduler.step()
  114. self.epoch += 1
  115. @torch.no_grad()
  116. def eval_one_epoch(self, model, evaluator):
  117. # chech model
  118. model_eval = model if self.model_ema is None else self.model_ema.ema
  119. # path to save model
  120. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  121. os.makedirs(path_to_save, exist_ok=True)
  122. if distributed_utils.is_main_process():
  123. # check evaluator
  124. if evaluator is None:
  125. print('No evaluator ... save model and go on training.')
  126. print('Saving state, epoch: {}'.format(self.epoch + 1))
  127. weight_name = '{}_no_eval.pth'.format(self.args.model)
  128. checkpoint_path = os.path.join(path_to_save, weight_name)
  129. torch.save({'model': model_eval.state_dict(),
  130. 'mAP': -1.,
  131. 'optimizer': self.optimizer.state_dict(),
  132. 'epoch': self.epoch,
  133. 'args': self.args},
  134. checkpoint_path)
  135. else:
  136. print('eval ...')
  137. # set eval mode
  138. model_eval.trainable = False
  139. model_eval.eval()
  140. # evaluate
  141. evaluator.evaluate(model_eval)
  142. # save model
  143. cur_map = evaluator.map
  144. if cur_map > self.best_map:
  145. # update best-map
  146. self.best_map = cur_map
  147. # save model
  148. print('Saving state, epoch:', self.epoch + 1)
  149. weight_name = '{}_best.pth'.format(self.args.model)
  150. checkpoint_path = os.path.join(path_to_save, weight_name)
  151. torch.save({'model': model_eval.state_dict(),
  152. 'mAP': round(self.best_map*100, 1),
  153. 'optimizer': self.optimizer.state_dict(),
  154. 'epoch': self.epoch,
  155. 'args': self.args},
  156. checkpoint_path)
  157. # set train mode.
  158. model_eval.trainable = True
  159. model_eval.train()
  160. if self.args.distributed:
  161. # wait for all processes to synchronize
  162. dist.barrier()
  163. def refine_targets(self, targets, min_box_size):
  164. # rescale targets
  165. for tgt in targets:
  166. boxes = tgt["boxes"].clone()
  167. labels = tgt["labels"].clone()
  168. # refine tgt
  169. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  170. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  171. keep = (min_tgt_size >= min_box_size)
  172. tgt["boxes"] = boxes[keep]
  173. tgt["labels"] = labels[keep]
  174. return targets
  175. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  176. """
  177. Deployed for Multi scale trick.
  178. """
  179. if isinstance(stride, int):
  180. max_stride = stride
  181. elif isinstance(stride, list):
  182. max_stride = max(stride)
  183. # During training phase, the shape of input image is square.
  184. old_img_size = images.shape[-1]
  185. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  186. new_img_size = new_img_size // max_stride * max_stride # size
  187. if new_img_size / old_img_size != 1:
  188. # interpolate
  189. images = torch.nn.functional.interpolate(
  190. input=images,
  191. size=new_img_size,
  192. mode='bilinear',
  193. align_corners=False)
  194. # rescale targets
  195. for tgt in targets:
  196. boxes = tgt["boxes"].clone()
  197. labels = tgt["labels"].clone()
  198. boxes = torch.clamp(boxes, 0, old_img_size)
  199. # rescale box
  200. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  201. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  202. # refine tgt
  203. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  204. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  205. keep = (min_tgt_size >= min_box_size)
  206. tgt["boxes"] = boxes[keep]
  207. tgt["labels"] = labels[keep]
  208. return images, targets, new_img_size