demo.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295
  1. import argparse
  2. import cv2
  3. import os
  4. import time
  5. import numpy as np
  6. import imageio
  7. import torch
  8. # load transform
  9. from dataset.build import build_transform
  10. # load some utils
  11. from utils.misc import load_weight
  12. from utils.box_ops import rescale_bboxes
  13. from utils.vis_tools import visualize
  14. from models.detectors import build_model
  15. from config import build_model_config, build_trans_config
  16. def parse_args():
  17. parser = argparse.ArgumentParser(description='YOLO Demo')
  18. # basic
  19. parser.add_argument('-size', '--img_size', default=640, type=int,
  20. help='the max size of input image')
  21. parser.add_argument('--mosaic', default=None, type=float,
  22. help='mosaic augmentation.')
  23. parser.add_argument('--mixup', default=None, type=float,
  24. help='mixup augmentation.')
  25. parser.add_argument('--mode', default='image',
  26. type=str, help='Use the data from image, video or camera')
  27. parser.add_argument('--cuda', action='store_true', default=False,
  28. help='Use cuda')
  29. parser.add_argument('--path_to_img', default='dataset/demo/images/',
  30. type=str, help='The path to image files')
  31. parser.add_argument('--path_to_vid', default='dataset/demo/videos/',
  32. type=str, help='The path to video files')
  33. parser.add_argument('--path_to_save', default='det_results/demos/',
  34. type=str, help='The path to save the detection results')
  35. parser.add_argument('-vt', '--vis_thresh', default=0.4, type=float,
  36. help='Final confidence threshold for visualization')
  37. parser.add_argument('--show', action='store_true', default=False,
  38. help='show visualization')
  39. parser.add_argument('--gif', action='store_true', default=False,
  40. help='generate gif.')
  41. # model
  42. parser.add_argument('-m', '--model', default='yolov1', type=str,
  43. help='build yolo')
  44. parser.add_argument('-nc', '--num_classes', default=80, type=int,
  45. help='number of classes.')
  46. parser.add_argument('--weight', default=None,
  47. type=str, help='Trained state_dict file path to open')
  48. parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
  49. help='confidence threshold')
  50. parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
  51. help='NMS threshold')
  52. parser.add_argument('--topk', default=1000, type=int,
  53. help='topk candidates dets of each level before NMS')
  54. parser.add_argument('--max_dets', default=300, type=int,
  55. help='max number of dets after NMS')
  56. parser.add_argument("--deploy", action="store_true", default=False,
  57. help="deploy mode or not")
  58. parser.add_argument('--fuse_repconv', action='store_true', default=False,
  59. help='fuse RepConv')
  60. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  61. help='fuse Conv & BN')
  62. parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
  63. help='Perform NMS operations regardless of category.')
  64. return parser.parse_args()
  65. def detect(args,
  66. model,
  67. device,
  68. transform,
  69. vis_thresh,
  70. mode='image'):
  71. # class color
  72. np.random.seed(0)
  73. class_colors = [(np.random.randint(255),
  74. np.random.randint(255),
  75. np.random.randint(255)) for _ in range(80)]
  76. save_path = os.path.join(args.path_to_save, mode)
  77. os.makedirs(save_path, exist_ok=True)
  78. # ------------------------- Camera ----------------------------
  79. if mode == 'camera':
  80. print('use camera !!!')
  81. fourcc = cv2.VideoWriter_fourcc(*'XVID')
  82. save_size = (640, 480)
  83. cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
  84. save_video_name = os.path.join(save_path, cur_time+'.avi')
  85. fps = 15.0
  86. out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
  87. print(save_video_name)
  88. image_list = []
  89. cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
  90. while True:
  91. ret, frame = cap.read()
  92. if ret:
  93. if cv2.waitKey(1) == ord('q'):
  94. break
  95. orig_h, orig_w, _ = frame.shape
  96. # prepare
  97. x, _, deltas = transform(frame)
  98. x = x.unsqueeze(0).to(device) / 255.
  99. # inference
  100. t0 = time.time()
  101. bboxes, scores, labels = model(x)
  102. t1 = time.time()
  103. print("detection time used ", t1-t0, "s")
  104. # rescale bboxes
  105. origin_img_size = [orig_h, orig_w]
  106. cur_img_size = [*x.shape[-2:]]
  107. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  108. # vis detection
  109. frame_vis = visualize(img=frame,
  110. bboxes=bboxes,
  111. scores=scores,
  112. labels=labels,
  113. class_colors=class_colors,
  114. vis_thresh=vis_thresh)
  115. frame_resized = cv2.resize(frame_vis, save_size)
  116. out.write(frame_resized)
  117. if args.gif:
  118. gif_resized = cv2.resize(frame, (640, 480))
  119. gif_resized_rgb = gif_resized[..., (2, 1, 0)]
  120. image_list.append(gif_resized_rgb)
  121. if args.show:
  122. cv2.imshow('detection', frame_resized)
  123. cv2.waitKey(1)
  124. else:
  125. break
  126. cap.release()
  127. out.release()
  128. cv2.destroyAllWindows()
  129. # generate GIF
  130. if args.gif:
  131. save_gif_path = os.path.join(save_path, 'gif_files')
  132. os.makedirs(save_gif_path, exist_ok=True)
  133. save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
  134. print('generating GIF ...')
  135. imageio.mimsave(save_gif_name, image_list, fps=fps)
  136. print('GIF done: {}'.format(save_gif_name))
  137. # ------------------------- Video ---------------------------
  138. elif mode == 'video':
  139. video = cv2.VideoCapture(args.path_to_vid)
  140. fourcc = cv2.VideoWriter_fourcc(*'XVID')
  141. save_size = (640, 480)
  142. cur_time = time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time()))
  143. save_video_name = os.path.join(save_path, cur_time+'.avi')
  144. fps = 15.0
  145. out = cv2.VideoWriter(save_video_name, fourcc, fps, save_size)
  146. print(save_video_name)
  147. image_list = []
  148. while(True):
  149. ret, frame = video.read()
  150. if ret:
  151. # ------------------------- Detection ---------------------------
  152. orig_h, orig_w, _ = frame.shape
  153. # prepare
  154. x, _, deltas = transform(frame)
  155. x = x.unsqueeze(0).to(device) / 255.
  156. # inference
  157. t0 = time.time()
  158. bboxes, scores, labels = model(x)
  159. t1 = time.time()
  160. print("detection time used ", t1-t0, "s")
  161. # rescale bboxes
  162. origin_img_size = [orig_h, orig_w]
  163. cur_img_size = [*x.shape[-2:]]
  164. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  165. # vis detection
  166. frame_vis = visualize(img=frame,
  167. bboxes=bboxes,
  168. scores=scores,
  169. labels=labels,
  170. class_colors=class_colors,
  171. vis_thresh=vis_thresh)
  172. frame_resized = cv2.resize(frame_vis, save_size)
  173. out.write(frame_resized)
  174. if args.gif:
  175. gif_resized = cv2.resize(frame, (640, 480))
  176. gif_resized_rgb = gif_resized[..., (2, 1, 0)]
  177. image_list.append(gif_resized_rgb)
  178. if args.show:
  179. cv2.imshow('detection', frame_resized)
  180. cv2.waitKey(1)
  181. else:
  182. break
  183. video.release()
  184. out.release()
  185. cv2.destroyAllWindows()
  186. # generate GIF
  187. if args.gif:
  188. save_gif_path = os.path.join(save_path, 'gif_files')
  189. os.makedirs(save_gif_path, exist_ok=True)
  190. save_gif_name = os.path.join(save_gif_path, '{}.gif'.format(cur_time))
  191. print('generating GIF ...')
  192. imageio.mimsave(save_gif_name, image_list, fps=fps)
  193. print('GIF done: {}'.format(save_gif_name))
  194. # ------------------------- Image ----------------------------
  195. elif mode == 'image':
  196. for i, img_id in enumerate(os.listdir(args.path_to_img)):
  197. image = cv2.imread((args.path_to_img + '/' + img_id), cv2.IMREAD_COLOR)
  198. orig_h, orig_w, _ = image.shape
  199. # prepare
  200. x, _, deltas = transform(image)
  201. x = x.unsqueeze(0).to(device) / 255.
  202. # inference
  203. t0 = time.time()
  204. bboxes, scores, labels = model(x)
  205. t1 = time.time()
  206. print("detection time used ", t1-t0, "s")
  207. # rescale bboxes
  208. origin_img_size = [orig_h, orig_w]
  209. cur_img_size = [*x.shape[-2:]]
  210. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  211. # vis detection
  212. img_processed = visualize(img=image,
  213. bboxes=bboxes,
  214. scores=scores,
  215. labels=labels,
  216. class_colors=class_colors,
  217. vis_thresh=vis_thresh)
  218. cv2.imwrite(os.path.join(save_path, str(i).zfill(6)+'.jpg'), img_processed)
  219. if args.show:
  220. cv2.imshow('detection', img_processed)
  221. cv2.waitKey(0)
  222. def run():
  223. args = parse_args()
  224. # cuda
  225. if args.cuda:
  226. print('use cuda')
  227. device = torch.device("cuda")
  228. else:
  229. device = torch.device("cpu")
  230. # config
  231. model_cfg = build_model_config(args)
  232. trans_cfg = build_trans_config(model_cfg['trans_type'])
  233. # build model
  234. model = build_model(args, model_cfg, device, args.num_classes, False)
  235. # load trained weight
  236. model = load_weight(model, args.weight, args.fuse_conv_bn)
  237. model.to(device).eval()
  238. # transform
  239. val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
  240. print("================= DETECT =================")
  241. # run
  242. detect(args=args,
  243. model=model,
  244. device=device,
  245. transform=val_transform,
  246. mode=args.mode,
  247. vis_thresh=args.vis_thresh)
  248. if __name__ == '__main__':
  249. run()