| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- import torch
- import torch.nn as nn
- try:
- from .rtcdet_v2_basic import Conv, MCBlock, DSBlock
- except:
- from rtcdet_v2_basic import Conv, MCBlock, DSBlock
- model_urls = {
- 'mcnet_p': None,
- 'mcnet_n': None,
- 'mcnet_t': None,
- 'mcnet_s': None,
- 'mcnet_m': None,
- 'mcnet_l': None,
- 'mcnet_x': None,
- }
- # ---------------------------- Backbones ----------------------------
- class MixedConvNet(nn.Module):
- def __init__(self, width=1.0, depth=1.0, num_heads=4, act_type='silu', norm_type='BN', depthwise=False):
- super(MixedConvNet, self).__init__()
- # ------------------ Basic parameters ------------------
- self.feat_dims_base = [64, 128, 256, 512, 1024]
- self.nblocks_base = [3, 6, 9, 3]
- self.feat_dims = [round(dim * width) for dim in self.feat_dims_base]
- self.nblocks = [round(nblock * depth) for nblock in self.nblocks_base]
- self.num_heads = num_heads
- self.act_type = act_type
- self.norm_type = norm_type
- self.depthwise = depthwise
-
- # ------------------ Network parameters ------------------
- ## P1/2
- self.layer_1 = nn.Sequential(
- Conv(3, self.feat_dims[0], k=3, p=1, s=2, act_type=self.act_type, norm_type=self.norm_type),
- Conv(self.feat_dims[0], self.feat_dims[0], k=3, p=1, act_type=self.act_type, norm_type=self.norm_type, depthwise=self.depthwise),
- )
- ## P2/4
- self.layer_2 = nn.Sequential(
- Conv(self.feat_dims[0], self.feat_dims[1], k=3, p=1, s=2, act_type=self.act_type, norm_type=self.norm_type),
- MCBlock(self.feat_dims[1], self.feat_dims[1], self.nblocks[0], self.num_heads, True, self.act_type, self.norm_type, self.depthwise)
- )
- ## P3/8
- self.layer_3 = nn.Sequential(
- DSBlock(self.feat_dims[1], self.feat_dims[2], self.num_heads, self.act_type, self.norm_type, self.depthwise),
- MCBlock(self.feat_dims[2], self.feat_dims[2], self.nblocks[1], self.num_heads, True, self.act_type, self.norm_type, self.depthwise)
- )
- ## P4/16
- self.layer_4 = nn.Sequential(
- DSBlock(self.feat_dims[2], self.feat_dims[3], self.num_heads, self.act_type, self.norm_type, self.depthwise),
- MCBlock(self.feat_dims[3], self.feat_dims[3], self.nblocks[2], self.num_heads, True, self.act_type, self.norm_type, self.depthwise)
- )
- ## P5/32
- self.layer_5 = nn.Sequential(
- DSBlock(self.feat_dims[3], self.feat_dims[4], self.num_heads, self.act_type, self.norm_type, self.depthwise),
- MCBlock(self.feat_dims[4], self.feat_dims[4], self.nblocks[3], self.num_heads, True, self.act_type, self.norm_type, self.depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ---------------------------- Functions ----------------------------
- ## load pretrained weight
- def load_weight(model, model_name):
- # load weight
- print('Loading pretrained weight ...')
- url = model_urls[model_name]
- if url is not None:
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = model.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print(k)
- model.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained for {}'.format(model_name))
- return model
- ## build MCNet
- def build_backbone(cfg, pretrained=False):
- # model
- backbone = MixedConvNet(cfg['width'], cfg['depth'], cfg['bk_num_heads'], cfg['bk_act'], cfg['bk_norm'], cfg['bk_depthwise'])
- # check whether to load imagenet pretrained weight
- if pretrained:
- if cfg['width'] == 0.25 and cfg['depth'] == 0.34 and cfg['bk_depthwise']:
- backbone = load_weight(backbone, model_name='mcnet_p')
- elif cfg['width'] == 0.25 and cfg['depth'] == 0.34:
- backbone = load_weight(backbone, model_name='mcnet_n')
- elif cfg['width'] == 0.375 and cfg['depth'] == 0.34:
- backbone = load_weight(backbone, model_name='mcnet_t')
- elif cfg['width'] == 0.5 and cfg['depth'] == 0.34:
- backbone = load_weight(backbone, model_name='mcnet_s')
- elif cfg['width'] == 0.75 and cfg['depth'] == 0.67:
- backbone = load_weight(backbone, model_name='mcnet_m')
- elif cfg['width'] == 1.0 and cfg['depth'] == 1.0:
- backbone = load_weight(backbone, model_name='mcnet_l')
- elif cfg['width'] == 1.25 and cfg['depth'] == 1.34:
- backbone = load_weight(backbone, model_name='mcnet_x')
- feat_dims = backbone.feat_dims[-3:]
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- ## Backbone
- 'backbone': 'mcnet',
- 'pretrained': True,
- 'bk_act': 'silu',
- 'bk_norm': 'BN',
- 'bk_depthwise': False,
- 'bk_num_heads': 4,
- 'width': 0.25,
- 'depth': 0.34,
- 'stride': [8, 16, 32], # P3, P4, P5
- 'max_stride': 32,
- }
- model, feats = build_backbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|