yolov7.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov7_backbone import build_backbone
  5. from .yolov7_neck import build_neck
  6. from .yolov7_pafpn import build_fpn
  7. from .yolov7_head import build_head
  8. # YOLOv7
  9. class YOLOv7(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False,
  18. deploy = False,
  19. nms_class_agnostic = False):
  20. super(YOLOv7, self).__init__()
  21. # ------------------- Basic parameters -------------------
  22. self.cfg = cfg # 模型配置文件
  23. self.device = device # cuda或者是cpu
  24. self.num_classes = num_classes # 类别的数量
  25. self.trainable = trainable # 训练的标记
  26. self.conf_thresh = conf_thresh # 得分阈值
  27. self.nms_thresh = nms_thresh # NMS阈值
  28. self.topk = topk # topk
  29. self.stride = [8, 16, 32] # 网络的输出步长
  30. self.deploy = deploy
  31. self.nms_class_agnostic = nms_class_agnostic
  32. # ------------------- Network Structure -------------------
  33. ## 主干网络
  34. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  35. ## 颈部网络: SPP模块
  36. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1]//2)
  37. feats_dim[-1] = self.neck.out_dim
  38. ## 颈部网络: 特征金字塔
  39. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['channel_width']))
  40. self.head_dim = self.fpn.out_dim
  41. ## 检测头
  42. self.non_shared_heads = nn.ModuleList(
  43. [build_head(cfg, head_dim, head_dim, num_classes)
  44. for head_dim in self.head_dim
  45. ])
  46. ## 预测层
  47. self.obj_preds = nn.ModuleList(
  48. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. self.cls_preds = nn.ModuleList(
  52. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  53. for head in self.non_shared_heads
  54. ])
  55. self.reg_preds = nn.ModuleList(
  56. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  57. for head in self.non_shared_heads
  58. ])
  59. # ---------------------- Basic Functions ----------------------
  60. ## generate anchor points
  61. def generate_anchors(self, level, fmp_size):
  62. """
  63. fmp_size: (List) [H, W]
  64. """
  65. # generate grid cells
  66. fmp_h, fmp_w = fmp_size
  67. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  68. # [H, W, 2] -> [HW, 2]
  69. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  70. anchor_xy += 0.5 # add center offset
  71. anchor_xy *= self.stride[level]
  72. anchors = anchor_xy.to(self.device)
  73. return anchors
  74. ## post-process
  75. def post_process(self, obj_preds, cls_preds, box_preds):
  76. """
  77. Input:
  78. obj_preds: List(Tensor) [[H x W, 1], ...]
  79. cls_preds: List(Tensor) [[H x W, C], ...]
  80. box_preds: List(Tensor) [[H x W, 4], ...]
  81. anchors: List(Tensor) [[H x W, 2], ...]
  82. """
  83. all_scores = []
  84. all_labels = []
  85. all_bboxes = []
  86. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  87. # (H x W x KA x C,)
  88. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  89. # Keep top k top scoring indices only.
  90. num_topk = min(self.topk, box_pred_i.size(0))
  91. # torch.sort is actually faster than .topk (at least on GPUs)
  92. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  93. topk_scores = predicted_prob[:num_topk]
  94. topk_idxs = topk_idxs[:num_topk]
  95. # filter out the proposals with low confidence score
  96. keep_idxs = topk_scores > self.conf_thresh
  97. scores = topk_scores[keep_idxs]
  98. topk_idxs = topk_idxs[keep_idxs]
  99. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  100. labels = topk_idxs % self.num_classes
  101. bboxes = box_pred_i[anchor_idxs]
  102. all_scores.append(scores)
  103. all_labels.append(labels)
  104. all_bboxes.append(bboxes)
  105. scores = torch.cat(all_scores)
  106. labels = torch.cat(all_labels)
  107. bboxes = torch.cat(all_bboxes)
  108. # to cpu & numpy
  109. scores = scores.cpu().numpy()
  110. labels = labels.cpu().numpy()
  111. bboxes = bboxes.cpu().numpy()
  112. # nms
  113. scores, labels, bboxes = multiclass_nms(
  114. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  115. return bboxes, scores, labels
  116. # ---------------------- Main Process for Inference ----------------------
  117. @torch.no_grad()
  118. def inference_single_image(self, x):
  119. # 主干网络
  120. pyramid_feats = self.backbone(x)
  121. # 颈部网络
  122. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  123. # 特征金字塔
  124. pyramid_feats = self.fpn(pyramid_feats)
  125. # 检测头
  126. all_obj_preds = []
  127. all_cls_preds = []
  128. all_box_preds = []
  129. all_anchors = []
  130. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  131. cls_feat, reg_feat = head(feat)
  132. # [1, C, H, W]
  133. obj_pred = self.obj_preds[level](reg_feat)
  134. cls_pred = self.cls_preds[level](cls_feat)
  135. reg_pred = self.reg_preds[level](reg_feat)
  136. # anchors: [M, 2]
  137. fmp_size = cls_pred.shape[-2:]
  138. anchors = self.generate_anchors(level, fmp_size)
  139. # [1, C, H, W] -> [H, W, C] -> [M, C]
  140. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  141. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  142. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  143. # decode bbox
  144. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  145. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  146. pred_x1y1 = ctr_pred - wh_pred * 0.5
  147. pred_x2y2 = ctr_pred + wh_pred * 0.5
  148. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  149. all_obj_preds.append(obj_pred)
  150. all_cls_preds.append(cls_pred)
  151. all_box_preds.append(box_pred)
  152. all_anchors.append(anchors)
  153. if self.deploy:
  154. obj_preds = torch.cat(all_obj_preds, dim=0)
  155. cls_preds = torch.cat(all_cls_preds, dim=0)
  156. box_preds = torch.cat(all_box_preds, dim=0)
  157. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  158. bboxes = box_preds
  159. # [n_anchors_all, 4 + C]
  160. outputs = torch.cat([bboxes, scores], dim=-1)
  161. return outputs
  162. else:
  163. # post process
  164. bboxes, scores, labels = self.post_process(
  165. all_obj_preds, all_cls_preds, all_box_preds)
  166. return bboxes, scores, labels
  167. # ---------------------- Main Process for Training ----------------------
  168. def forward(self, x):
  169. if not self.trainable:
  170. return self.inference_single_image(x)
  171. else:
  172. # 主干网络
  173. pyramid_feats = self.backbone(x)
  174. # 颈部网络
  175. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  176. # 特征金字塔
  177. pyramid_feats = self.fpn(pyramid_feats)
  178. # 检测头
  179. all_anchors = []
  180. all_strides = []
  181. all_obj_preds = []
  182. all_cls_preds = []
  183. all_box_preds = []
  184. all_reg_preds = []
  185. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  186. cls_feat, reg_feat = head(feat)
  187. # [B, C, H, W]
  188. obj_pred = self.obj_preds[level](reg_feat)
  189. cls_pred = self.cls_preds[level](cls_feat)
  190. reg_pred = self.reg_preds[level](reg_feat)
  191. B, _, H, W = cls_pred.size()
  192. fmp_size = [H, W]
  193. # generate anchor boxes: [M, 4]
  194. anchors = self.generate_anchors(level, fmp_size)
  195. # stride tensor: [M, 1]
  196. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  197. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  198. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  199. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  200. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  201. # decode bbox
  202. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  203. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  204. pred_x1y1 = ctr_pred - wh_pred * 0.5
  205. pred_x2y2 = ctr_pred + wh_pred * 0.5
  206. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  207. all_obj_preds.append(obj_pred)
  208. all_cls_preds.append(cls_pred)
  209. all_box_preds.append(box_pred)
  210. all_reg_preds.append(reg_pred)
  211. all_anchors.append(anchors)
  212. all_strides.append(stride_tensor)
  213. # output dict
  214. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  215. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  216. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  217. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  218. "anchors": all_anchors, # List(Tensor) [M, 2]
  219. "strides": self.stride, # List(Int) [8, 16, 32]
  220. "stride_tensors": all_strides # List(Tensor) [M, 1]
  221. }
  222. return outputs