yolov3.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov3_backbone import build_backbone
  5. from .yolov3_neck import build_neck
  6. from .yolov3_fpn import build_fpn
  7. from .yolov3_head import build_head
  8. # YOLOv3
  9. class YOLOv3(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False,
  18. deploy=False,
  19. nms_class_agnostic=False):
  20. super(YOLOv3, self).__init__()
  21. # ------------------- Basic parameters -------------------
  22. self.cfg = cfg # 模型配置文件
  23. self.device = device # cuda或者是cpu
  24. self.num_classes = num_classes # 类别的数量
  25. self.trainable = trainable # 训练的标记
  26. self.conf_thresh = conf_thresh # 得分阈值
  27. self.nms_thresh = nms_thresh # NMS阈值
  28. self.topk = topk # topk
  29. self.stride = [8, 16, 32] # 网络的输出步长
  30. self.deploy = deploy
  31. self.nms_class_agnostic = nms_class_agnostic
  32. # ------------------- Anchor box -------------------
  33. self.num_levels = 3
  34. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  35. self.anchor_size = torch.as_tensor(
  36. cfg['anchor_size']
  37. ).float().view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  38. # ------------------- Network Structure -------------------
  39. ## 主干网络
  40. self.backbone, feats_dim = build_backbone(
  41. cfg['backbone'], trainable&cfg['pretrained'])
  42. ## 颈部网络: SPP模块
  43. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  44. feats_dim[-1] = self.neck.out_dim
  45. ## 颈部网络: 特征金字塔
  46. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  47. self.head_dim = self.fpn.out_dim
  48. ## 检测头
  49. self.non_shared_heads = nn.ModuleList(
  50. [build_head(cfg, head_dim, head_dim, num_classes)
  51. for head_dim in self.head_dim
  52. ])
  53. ## 预测层
  54. self.obj_preds = nn.ModuleList(
  55. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  56. for head in self.non_shared_heads
  57. ])
  58. self.cls_preds = nn.ModuleList(
  59. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  60. for head in self.non_shared_heads
  61. ])
  62. self.reg_preds = nn.ModuleList(
  63. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  64. for head in self.non_shared_heads
  65. ])
  66. # ---------------------- Basic Functions ----------------------
  67. ## generate anchor points
  68. def generate_anchors(self, level, fmp_size):
  69. """
  70. fmp_size: (List) [H, W]
  71. """
  72. fmp_h, fmp_w = fmp_size
  73. # [KA, 2]
  74. anchor_size = self.anchor_size[level]
  75. # generate grid cells
  76. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  77. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  78. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  79. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  80. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  81. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  82. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  83. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  84. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  85. return anchors
  86. ## post-process
  87. def post_process(self, obj_preds, cls_preds, box_preds):
  88. """
  89. Input:
  90. obj_preds: List(Tensor) [[H x W x A, 1], ...]
  91. cls_preds: List(Tensor) [[H x W x A, C], ...]
  92. box_preds: List(Tensor) [[H x W x A, 4], ...]
  93. anchors: List(Tensor) [[H x W x A, 2], ...]
  94. """
  95. all_scores = []
  96. all_labels = []
  97. all_bboxes = []
  98. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  99. # (H x W x KA x C,)
  100. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  101. # Keep top k top scoring indices only.
  102. num_topk = min(self.topk, box_pred_i.size(0))
  103. # torch.sort is actually faster than .topk (at least on GPUs)
  104. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  105. topk_scores = predicted_prob[:num_topk]
  106. topk_idxs = topk_idxs[:num_topk]
  107. # filter out the proposals with low confidence score
  108. keep_idxs = topk_scores > self.conf_thresh
  109. scores = topk_scores[keep_idxs]
  110. topk_idxs = topk_idxs[keep_idxs]
  111. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  112. labels = topk_idxs % self.num_classes
  113. bboxes = box_pred_i[anchor_idxs]
  114. all_scores.append(scores)
  115. all_labels.append(labels)
  116. all_bboxes.append(bboxes)
  117. scores = torch.cat(all_scores)
  118. labels = torch.cat(all_labels)
  119. bboxes = torch.cat(all_bboxes)
  120. # to cpu & numpy
  121. scores = scores.cpu().numpy()
  122. labels = labels.cpu().numpy()
  123. bboxes = bboxes.cpu().numpy()
  124. # nms
  125. scores, labels, bboxes = multiclass_nms(
  126. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  127. return bboxes, scores, labels
  128. # ---------------------- Main Process for Inference ----------------------
  129. @torch.no_grad()
  130. def inference(self, x):
  131. # 主干网络
  132. pyramid_feats = self.backbone(x)
  133. # 颈部网络
  134. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  135. # 特征金字塔
  136. pyramid_feats = self.fpn(pyramid_feats)
  137. # 检测头
  138. all_anchors = []
  139. all_obj_preds = []
  140. all_cls_preds = []
  141. all_box_preds = []
  142. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  143. cls_feat, reg_feat = head(feat)
  144. # [1, C, H, W]
  145. obj_pred = self.obj_preds[level](reg_feat)
  146. cls_pred = self.cls_preds[level](cls_feat)
  147. reg_pred = self.reg_preds[level](reg_feat)
  148. # anchors: [M, 2]
  149. fmp_size = cls_pred.shape[-2:]
  150. anchors = self.generate_anchors(level, fmp_size)
  151. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  152. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  153. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  154. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  155. # decode bbox
  156. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  157. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  158. pred_x1y1 = ctr_pred - wh_pred * 0.5
  159. pred_x2y2 = ctr_pred + wh_pred * 0.5
  160. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  161. all_obj_preds.append(obj_pred)
  162. all_cls_preds.append(cls_pred)
  163. all_box_preds.append(box_pred)
  164. all_anchors.append(anchors)
  165. if self.deploy:
  166. obj_preds = torch.cat(all_obj_preds, dim=0)
  167. cls_preds = torch.cat(all_cls_preds, dim=0)
  168. box_preds = torch.cat(all_box_preds, dim=0)
  169. scores = torch.sqrt(obj_preds.sigmoid() * cls_preds.sigmoid())
  170. bboxes = box_preds
  171. # [n_anchors_all, 4 + C]
  172. outputs = torch.cat([bboxes, scores], dim=-1)
  173. return outputs
  174. else:
  175. # post process
  176. bboxes, scores, labels = self.post_process(
  177. all_obj_preds, all_cls_preds, all_box_preds)
  178. return bboxes, scores, labels
  179. # ---------------------- Main Process for Training ----------------------
  180. def forward(self, x):
  181. if not self.trainable:
  182. return self.inference(x)
  183. else:
  184. bs = x.shape[0]
  185. # 主干网络
  186. pyramid_feats = self.backbone(x)
  187. # 颈部网络
  188. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  189. # 特征金字塔
  190. pyramid_feats = self.fpn(pyramid_feats)
  191. # 检测头
  192. all_fmp_sizes = []
  193. all_obj_preds = []
  194. all_cls_preds = []
  195. all_box_preds = []
  196. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  197. cls_feat, reg_feat = head(feat)
  198. # [B, C, H, W]
  199. obj_pred = self.obj_preds[level](reg_feat)
  200. cls_pred = self.cls_preds[level](cls_feat)
  201. reg_pred = self.reg_preds[level](reg_feat)
  202. fmp_size = cls_pred.shape[-2:]
  203. # generate anchor boxes: [M, 4]
  204. anchors = self.generate_anchors(level, fmp_size)
  205. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  206. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  207. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  208. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  209. # decode bbox
  210. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  211. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  212. pred_x1y1 = ctr_pred - wh_pred * 0.5
  213. pred_x2y2 = ctr_pred + wh_pred * 0.5
  214. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  215. all_obj_preds.append(obj_pred)
  216. all_cls_preds.append(cls_pred)
  217. all_box_preds.append(box_pred)
  218. all_fmp_sizes.append(fmp_size)
  219. # output dict
  220. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  221. "pred_cls": all_cls_preds, # List [B, M, C]
  222. "pred_box": all_box_preds, # List [B, M, 4]
  223. 'fmp_sizes': all_fmp_sizes, # List
  224. 'strides': self.stride, # List
  225. }
  226. return outputs