yjh0410 ec10144a0e update all README files hace 2 años
..
README.md ec10144a0e update all README files hace 2 años
build.py f878ef3bcd add nms_class_agnostic for test hace 2 años
loss.py 0744feec35 add YOLOv7-Plus hace 2 años
matcher.py 7cf531e7da add Tracking hace 2 años
yolov2.py f878ef3bcd add nms_class_agnostic for test hace 2 años
yolov2_backbone.py 7cf531e7da add Tracking hace 2 años
yolov2_basic.py 7cf531e7da add Tracking hace 2 años
yolov2_head.py 7cf531e7da add Tracking hace 2 años
yolov2_neck.py 7cf531e7da add Tracking hace 2 años

README.md

Redesigned YOLOv2:

  • For training, we train redesigned YOLOv2 with 150 epochs on COCO.
  • For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
  • For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
  • For learning rate scheduler, we use linear decay scheduler.

Train YOLOv2

Single GPU

Taking training YOLOv2 on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov2 -bs 16 -size 640 --wp_epoch 3 --max_epoch 200 --eval_epoch 10 --no_aug_epoch 15 --ema --fp16 --multi_scale 

Multi GPU

Taking training YOLOv2 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov2 -bs 128 -size 640 --wp_epoch 3 --max_epoch 200  --eval_epoch 10 --no_aug_epoch 15 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test YOLOv2

Taking testing YOLOv2 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov2 --weight path/to/yolov2.pth -size 640 -vt 0.3 --show 

Evaluate YOLOv2

Taking evaluating YOLOv2 on COCO-val as the example,

python eval.py --cuda -d coco-val --root path/to/coco -m yolov2 --weight path/to/yolov2.pth 

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov2 --weight path/to/weight -size 640 -vt 0.3 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov2 --weight path/to/weight -size 640 -vt 0.3 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov2 --weight path/to/weight -size 640 -vt 0.3 --show --gif
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOv2 DarkNet-19 1xb16 640 32.7 50.9 53.9 30.9 ckpt