| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- import random
- import cv2
- import math
- import numpy as np
- import torch
- import albumentations as albu
- # ------------------------- Basic augmentations -------------------------
- ## Spatial transform
- def random_perspective(image,
- targets=(),
- degrees=10,
- translate=.1,
- scale=[0.1, 2.0],
- shear=10,
- perspective=0.0,
- border=(0, 0)):
- # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
- # targets = [cls, xyxy]
- height = image.shape[0] + border[0] * 2 # shape(h,w,c)
- width = image.shape[1] + border[1] * 2
- # Center
- C = np.eye(3)
- C[0, 2] = -image.shape[1] / 2 # x translation (pixels)
- C[1, 2] = -image.shape[0] / 2 # y translation (pixels)
- # Perspective
- P = np.eye(3)
- P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
- P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
- # Rotation and Scale
- R = np.eye(3)
- a = random.uniform(-degrees, degrees)
- # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
- s = random.uniform(scale[0], scale[1])
- # s = 2 ** random.uniform(-scale, scale)
- R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
- # Shear
- S = np.eye(3)
- S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
- S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
- # Translation
- T = np.eye(3)
- T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
- T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
- # Combined rotation matrix
- M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
- if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
- if perspective:
- image = cv2.warpPerspective(image, M, dsize=(width, height), borderValue=(114, 114, 114))
- else: # affine
- image = cv2.warpAffine(image, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
- # Transform label coordinates
- n = len(targets)
- if n:
- new = np.zeros((n, 4))
- # warp boxes
- xy = np.ones((n * 4, 3))
- xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
- xy = xy @ M.T # transform
- xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
- # create new boxes
- x = xy[:, [0, 2, 4, 6]]
- y = xy[:, [1, 3, 5, 7]]
- new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
- # clip
- new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
- new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
- targets[:, 1:5] = new
- return image, targets
- ## Color transform
- def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
- r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- dtype = img.dtype # uint8
- x = np.arange(0, 256, dtype=np.int16)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
- ## Ablu transform
- class Albumentations(object):
- def __init__(self, img_size=640):
- self.img_size = img_size
- self.transform = albu.Compose(
- [albu.Blur(p=0.01),
- albu.MedianBlur(p=0.01),
- albu.ToGray(p=0.01),
- albu.CLAHE(p=0.01),
- ],
- bbox_params=albu.BboxParams(format='pascal_voc', label_fields=['labels'])
- )
- def __call__(self, image, target=None):
- labels = target['labels']
- bboxes = target['boxes']
- if len(labels) > 0:
- new = self.transform(image=image, bboxes=bboxes, labels=labels)
- if len(new["labels"]) > 0:
- image = new['image']
- target['labels'] = np.array(new["labels"], dtype=labels.dtype)
- target['boxes'] = np.array(new["bboxes"], dtype=bboxes.dtype)
- return image, target
- # ------------------------- Strong augmentations -------------------------
- ## YOLOv5-Mosaic
- def yolov5_mosaic_augment(image_list, target_list, img_size, affine_params, is_train=False):
- assert len(image_list) == 4
- mosaic_img = np.ones([img_size*2, img_size*2, image_list[0].shape[2]], dtype=np.uint8) * 114
- # mosaic center
- yc, xc = [int(random.uniform(-x, 2*img_size + x)) for x in [-img_size // 2, -img_size // 2]]
- # yc = xc = self.img_size
- mosaic_bboxes = []
- mosaic_labels = []
- for i in range(4):
- img_i, target_i = image_list[i], target_list[i]
- bboxes_i = target_i["boxes"]
- labels_i = target_i["labels"]
- orig_h, orig_w, _ = img_i.shape
- # resize
- r = img_size / max(orig_h, orig_w)
- if r != 1:
- interp = cv2.INTER_LINEAR if (is_train or r > 1) else cv2.INTER_AREA
- img_i = cv2.resize(img_i, (int(orig_w * r), int(orig_h * r)), interpolation=interp)
- h, w, _ = img_i.shape
- # place img in img4
- if i == 0: # top left
- x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
- elif i == 1: # top right
- x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, img_size * 2), yc
- x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
- elif i == 2: # bottom left
- x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(img_size * 2, yc + h)
- x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
- elif i == 3: # bottom right
- x1a, y1a, x2a, y2a = xc, yc, min(xc + w, img_size * 2), min(img_size * 2, yc + h)
- x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
- mosaic_img[y1a:y2a, x1a:x2a] = img_i[y1b:y2b, x1b:x2b]
- padw = x1a - x1b
- padh = y1a - y1b
- # labels
- bboxes_i_ = bboxes_i.copy()
- if len(bboxes_i) > 0:
- # a valid target, and modify it.
- bboxes_i_[:, 0] = (w * bboxes_i[:, 0] / orig_w + padw)
- bboxes_i_[:, 1] = (h * bboxes_i[:, 1] / orig_h + padh)
- bboxes_i_[:, 2] = (w * bboxes_i[:, 2] / orig_w + padw)
- bboxes_i_[:, 3] = (h * bboxes_i[:, 3] / orig_h + padh)
- mosaic_bboxes.append(bboxes_i_)
- mosaic_labels.append(labels_i)
- if len(mosaic_bboxes) == 0:
- mosaic_bboxes = np.array([]).reshape(-1, 4)
- mosaic_labels = np.array([]).reshape(-1)
- else:
- mosaic_bboxes = np.concatenate(mosaic_bboxes)
- mosaic_labels = np.concatenate(mosaic_labels)
- # clip
- mosaic_bboxes = mosaic_bboxes.clip(0, img_size * 2)
- # random perspective
- mosaic_targets = np.concatenate([mosaic_labels[..., None], mosaic_bboxes], axis=-1)
- mosaic_img, mosaic_targets = random_perspective(
- mosaic_img,
- mosaic_targets,
- affine_params['degrees'],
- translate=affine_params['translate'],
- scale=affine_params['scale'],
- shear=affine_params['shear'],
- perspective=affine_params['perspective'],
- border=[-img_size//2, -img_size//2]
- )
- # target
- mosaic_target = {
- "boxes": mosaic_targets[..., 1:],
- "labels": mosaic_targets[..., 0],
- "orig_size": [img_size, img_size]
- }
- return mosaic_img, mosaic_target
- ## YOLOv5-Mixup
- def yolov5_mixup_augment(origin_image, origin_target, new_image, new_target):
- if origin_image.shape[:2] != new_image.shape[:2]:
- img_size = max(new_image.shape[:2])
- # origin_image is not a mosaic image
- orig_h, orig_w = origin_image.shape[:2]
- scale_ratio = img_size / max(orig_h, orig_w)
- if scale_ratio != 1:
- interp = cv2.INTER_LINEAR if scale_ratio > 1 else cv2.INTER_AREA
- resize_size = (int(orig_w * scale_ratio), int(orig_h * scale_ratio))
- origin_image = cv2.resize(origin_image, resize_size, interpolation=interp)
- # pad new image
- pad_origin_image = np.ones([img_size, img_size, origin_image.shape[2]], dtype=np.uint8) * 114
- pad_origin_image[:resize_size[1], :resize_size[0]] = origin_image
- origin_image = pad_origin_image.copy()
- del pad_origin_image
- r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
- mixup_image = r * origin_image.astype(np.float32) + \
- (1.0 - r)* new_image.astype(np.float32)
- mixup_image = mixup_image.astype(np.uint8)
-
- cls_labels = new_target["labels"].copy()
- box_labels = new_target["boxes"].copy()
- mixup_bboxes = np.concatenate([origin_target["boxes"], box_labels], axis=0)
- mixup_labels = np.concatenate([origin_target["labels"], cls_labels], axis=0)
- mixup_target = {
- "boxes": mixup_bboxes,
- "labels": mixup_labels,
- 'orig_size': mixup_image.shape[:2]
- }
-
- return mixup_image, mixup_target
-
- ## YOLOX-Mixup
- def yolox_mixup_augment(origin_img, origin_target, new_img, new_target, img_size, mixup_scale):
- jit_factor = random.uniform(*mixup_scale)
- FLIP = random.uniform(0, 1) > 0.5
- # resize new image
- orig_h, orig_w = new_img.shape[:2]
- cp_scale_ratio = img_size / max(orig_h, orig_w)
- if cp_scale_ratio != 1:
- interp = cv2.INTER_LINEAR if cp_scale_ratio > 1 else cv2.INTER_AREA
- resized_new_img = cv2.resize(
- new_img, (int(orig_w * cp_scale_ratio), int(orig_h * cp_scale_ratio)), interpolation=interp)
- else:
- resized_new_img = new_img
- # pad new image
- cp_img = np.ones([img_size, img_size, new_img.shape[2]], dtype=np.uint8) * 114
- new_shape = (resized_new_img.shape[1], resized_new_img.shape[0])
- cp_img[:new_shape[1], :new_shape[0]] = resized_new_img
- # resize padded new image
- cp_img_h, cp_img_w = cp_img.shape[:2]
- cp_new_shape = (int(cp_img_w * jit_factor),
- int(cp_img_h * jit_factor))
- cp_img = cv2.resize(cp_img, (cp_new_shape[0], cp_new_shape[1]))
- cp_scale_ratio *= jit_factor
- # flip new image
- if FLIP:
- cp_img = cp_img[:, ::-1, :]
- # pad image
- origin_h, origin_w = cp_img.shape[:2]
- target_h, target_w = origin_img.shape[:2]
- padded_img = np.zeros(
- (max(origin_h, target_h), max(origin_w, target_w), 3), dtype=np.uint8
- )
- padded_img[:origin_h, :origin_w] = cp_img
- # crop padded image
- x_offset, y_offset = 0, 0
- if padded_img.shape[0] > target_h:
- y_offset = random.randint(0, padded_img.shape[0] - target_h - 1)
- if padded_img.shape[1] > target_w:
- x_offset = random.randint(0, padded_img.shape[1] - target_w - 1)
- padded_cropped_img = padded_img[
- y_offset: y_offset + target_h, x_offset: x_offset + target_w
- ]
- # process target
- new_boxes = new_target["boxes"]
- new_labels = new_target["labels"]
- new_boxes[:, 0::2] = np.clip(new_boxes[:, 0::2] * cp_scale_ratio, 0, origin_w)
- new_boxes[:, 1::2] = np.clip(new_boxes[:, 1::2] * cp_scale_ratio, 0, origin_h)
- if FLIP:
- new_boxes[:, 0::2] = (
- origin_w - new_boxes[:, 0::2][:, ::-1]
- )
- new_boxes[:, 0::2] = np.clip(
- new_boxes[:, 0::2] - x_offset, 0, target_w
- )
- new_boxes[:, 1::2] = np.clip(
- new_boxes[:, 1::2] - y_offset, 0, target_h
- )
- # mixup target
- mixup_boxes = np.concatenate([new_boxes, origin_target['boxes']], axis=0)
- mixup_labels = np.concatenate([new_labels, origin_target['labels']], axis=0)
- mixup_target = {
- 'boxes': mixup_boxes,
- 'labels': mixup_labels
- }
- # mixup images
- origin_img = origin_img.astype(np.float32)
- origin_img = 0.5 * origin_img + 0.5 * padded_cropped_img.astype(np.float32)
- return origin_img.astype(np.uint8), mixup_target
-
- # ------------------------- Preprocessers -------------------------
- ## YOLOv5-style Transform for Train
- class YOLOv5Augmentation(object):
- def __init__(self, img_size=640, trans_config=None, use_ablu=False):
- # Basic parameters
- self.img_size = img_size
- self.trans_config = trans_config
- # Albumentations
- self.ablu_trans = Albumentations(img_size) if use_ablu else None
- def __call__(self, image, target, mosaic=False):
- # --------------- Keep ratio Resize ---------------
- img_h0, img_w0 = image.shape[:2]
- r = self.img_size / max(img_h0, img_w0)
- if r != 1:
- interp = cv2.INTER_LINEAR
- new_shape = (int(round(img_w0 * r)), int(round(img_h0 * r)))
- img = cv2.resize(image, new_shape, interpolation=interp)
- else:
- img = image
- img_h, img_w = img.shape[:2]
- # --------------- Filter bad targets ---------------
- tgt_boxes_wh = target["boxes"][..., 2:] - target["boxes"][..., :2]
- min_tgt_size = np.min(tgt_boxes_wh, axis=-1)
- keep = (min_tgt_size > 1)
- target["boxes"] = target["boxes"][keep]
- target["labels"] = target["labels"][keep]
- # --------------- Albumentations ---------------
- if self.ablu_trans is not None:
- img, target = self.ablu_trans(img, target)
- # --------------- HSV augmentations ---------------
- augment_hsv(img, hgain=self.trans_config['hsv_h'],
- sgain=self.trans_config['hsv_s'],
- vgain=self.trans_config['hsv_v'])
-
- # --------------- Spatial augmentations ---------------
- ## Random perspective
- if not mosaic:
- # rescale bbox
- boxes_ = target["boxes"].copy()
- boxes_[:, [0, 2]] = boxes_[:, [0, 2]] / img_w0 * img_w
- boxes_[:, [1, 3]] = boxes_[:, [1, 3]] / img_h0 * img_h
- target["boxes"] = boxes_
- # spatial augment
- target_ = np.concatenate(
- (target['labels'][..., None], target['boxes']), axis=-1)
- img, target_ = random_perspective(
- img, target_,
- degrees=self.trans_config['degrees'],
- translate=self.trans_config['translate'],
- scale=self.trans_config['scale'],
- shear=self.trans_config['shear'],
- perspective=self.trans_config['perspective']
- )
- target['boxes'] = target_[..., 1:]
- target['labels'] = target_[..., 0]
- ## Random flip
- if random.random() < 0.5:
- w = img.shape[1]
- img = np.fliplr(img).copy()
- boxes = target['boxes'].copy()
- boxes[..., [0, 2]] = w - boxes[..., [2, 0]]
- target["boxes"] = boxes
- # --------------- To torch.Tensor ---------------
- img_tensor = torch.from_numpy(img).permute(2, 0, 1).contiguous().float()
- if target is not None:
- target["boxes"] = torch.as_tensor(target["boxes"]).float()
- target["labels"] = torch.as_tensor(target["labels"]).long()
- # --------------- Pad image ---------------
- img_h0, img_w0 = img_tensor.shape[1:]
- pad_image = torch.ones([img_tensor.size(0), self.img_size, self.img_size]).float() * 114.
- pad_image[:, :img_h0, :img_w0] = img_tensor
- dh = self.img_size - img_h0
- dw = self.img_size - img_w0
- return pad_image, target, [dw, dh]
- ## YOLOv5-style Transform for Eval
- class YOLOv5BaseTransform(object):
- def __init__(self, img_size=640, max_stride=32):
- self.img_size = img_size
- self.max_stride = max_stride
- def __call__(self, image, target=None, mosaic=False):
- # --------------- Keep ratio Resize ---------------
- ## Resize image
- img_h0, img_w0 = image.shape[:2]
- r = self.img_size / max(img_h0, img_w0)
- if r != 1:
- new_shape = (int(round(img_w0 * r)), int(round(img_h0 * r)))
- img = cv2.resize(image, new_shape, interpolation=cv2.INTER_LINEAR)
- else:
- img = image
- img_h, img_w = img.shape[:2]
- ## Rescale bboxes
- if target is not None:
- # rescale bbox
- boxes_ = target["boxes"].copy()
- boxes_[:, [0, 2]] = boxes_[:, [0, 2]] / img_w0 * img_w
- boxes_[:, [1, 3]] = boxes_[:, [1, 3]] / img_h0 * img_h
- target["boxes"] = boxes_
- # --------------- To torch.Tensor ---------------
- img_tensor = torch.from_numpy(img).permute(2, 0, 1).contiguous().float()
- if target is not None:
- target["boxes"] = torch.as_tensor(target["boxes"]).float()
- target["labels"] = torch.as_tensor(target["labels"]).long()
- # --------------- Pad image ---------------
- img_h0, img_w0 = img_tensor.shape[1:]
- dh = img_h0 % self.max_stride
- dw = img_w0 % self.max_stride
- dh = dh if dh == 0 else self.max_stride - dh
- dw = dw if dw == 0 else self.max_stride - dw
-
- pad_img_h = img_h0 + dh
- pad_img_w = img_w0 + dw
- pad_image = torch.ones([img_tensor.size(0), pad_img_h, pad_img_w]).float() * 114.
- pad_image[:, :img_h0, :img_w0] = img_tensor
- return pad_image, target, [dw, dh]
|