build.py 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. import os
  2. try:
  3. from .voc import VOCDetection
  4. from .coco import COCODataset
  5. from .ourdataset import OurDataset
  6. from .data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  7. from .data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  8. except:
  9. from voc import VOCDetection
  10. from coco import COCODataset
  11. from ourdataset import OurDataset
  12. from data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  13. from data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  14. # ------------------------------ Dataset ------------------------------
  15. def build_dataset(args, data_cfg, trans_config, transform, is_train=False):
  16. # ------------------------- Basic parameters -------------------------
  17. data_dir = os.path.join(args.root, data_cfg['data_name'])
  18. num_classes = data_cfg['num_classes']
  19. class_names = data_cfg['class_names']
  20. class_indexs = data_cfg['class_indexs']
  21. dataset_info = {
  22. 'num_classes': num_classes,
  23. 'class_names': class_names,
  24. 'class_indexs': class_indexs
  25. }
  26. # ------------------------- Build dataset -------------------------
  27. ## VOC dataset
  28. if args.dataset == 'voc':
  29. dataset = VOCDetection(
  30. img_size=args.img_size,
  31. data_dir=data_dir,
  32. image_sets=[('2007', 'trainval'), ('2012', 'trainval')] if is_train else [('2007', 'test')],
  33. transform=transform,
  34. trans_config=trans_config,
  35. load_cache=args.load_cache
  36. )
  37. ## COCO dataset
  38. elif args.dataset == 'coco':
  39. dataset = COCODataset(
  40. img_size=args.img_size,
  41. data_dir=data_dir,
  42. image_set='train2017' if is_train else 'val2017',
  43. transform=transform,
  44. trans_config=trans_config,
  45. load_cache=args.load_cache
  46. )
  47. ## Custom dataset
  48. elif args.dataset == 'ourdataset':
  49. dataset = OurDataset(
  50. data_dir=data_dir,
  51. img_size=args.img_size,
  52. image_set='train' if is_train else 'val',
  53. transform=transform,
  54. trans_config=trans_config,
  55. load_cache=args.load_cache
  56. )
  57. return dataset, dataset_info
  58. # ------------------------------ Transform ------------------------------
  59. def build_transform(args, trans_config, max_stride=32, is_train=False):
  60. # Modify trans_config
  61. if is_train:
  62. ## mosaic prob.
  63. if args.mosaic is not None:
  64. trans_config['mosaic_prob']=args.mosaic if is_train else 0.0
  65. else:
  66. trans_config['mosaic_prob']=trans_config['mosaic_prob'] if is_train else 0.0
  67. ## mixup prob.
  68. if args.mixup is not None:
  69. trans_config['mixup_prob']=args.mixup if is_train else 0.0
  70. else:
  71. trans_config['mixup_prob']=trans_config['mixup_prob'] if is_train else 0.0
  72. # Transform
  73. if trans_config['aug_type'] == 'ssd':
  74. if is_train:
  75. transform = SSDAugmentation(img_size=args.img_size,)
  76. else:
  77. transform = SSDBaseTransform(img_size=args.img_size,)
  78. trans_config['mosaic_prob'] = 0.0
  79. trans_config['mixup_prob'] = 0.0
  80. elif trans_config['aug_type'] == 'yolov5':
  81. if is_train:
  82. transform = YOLOv5Augmentation(
  83. img_size=args.img_size,
  84. trans_config=trans_config,
  85. use_ablu=trans_config['use_ablu']
  86. )
  87. else:
  88. transform = YOLOv5BaseTransform(
  89. img_size=args.img_size,
  90. max_stride=max_stride
  91. )
  92. return transform, trans_config