fpn.py 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from typing import List
  5. try:
  6. from .basic import BasicConv, RTCBlock, CSPRepLayer
  7. from .transformer import TransformerEncoder
  8. except:
  9. from basic import BasicConv, RTCBlock, CSPRepLayer
  10. from transformer import TransformerEncoder
  11. # Build PaFPN
  12. def build_fpn(cfg, in_dims, out_dim):
  13. if cfg['fpn'] == 'hybrid_encoder':
  14. return HybridEncoder(in_dims = in_dims,
  15. out_dim = out_dim,
  16. depth = cfg['depth'],
  17. act_type = cfg['fpn_act'],
  18. norm_type = cfg['fpn_norm'],
  19. depthwise = cfg['fpn_depthwise'],
  20. num_heads = cfg['en_num_heads'],
  21. num_layers = cfg['en_num_layers'],
  22. mlp_ratio = cfg['en_mlp_ratio'],
  23. dropout = cfg['en_dropout'],
  24. pe_temperature = cfg['pe_temperature'],
  25. en_act_type = cfg['en_act'],
  26. )
  27. elif cfg['fpn'] == 'pp_hybrid_encoder':
  28. return PPHybridEncoder(in_dims = in_dims,
  29. out_dim = out_dim,
  30. depth = cfg['depth'],
  31. expansion = cfg['expansion'],
  32. act_type = cfg['fpn_act'],
  33. norm_type = cfg['fpn_norm'],
  34. depthwise = cfg['fpn_depthwise'],
  35. num_heads = cfg['en_num_heads'],
  36. num_layers = cfg['en_num_layers'],
  37. mlp_ratio = cfg['en_mlp_ratio'],
  38. dropout = cfg['en_dropout'],
  39. pe_temperature = cfg['pe_temperature'],
  40. en_act_type = cfg['en_act'],
  41. )
  42. else:
  43. raise NotImplementedError("Unknown PaFPN: <{}>".format(cfg['fpn']))
  44. # ----------------- Feature Pyramid Network -----------------
  45. ## Hybrid Encoder (Transformer encoder + Convolutional PaFPN)
  46. class HybridEncoder(nn.Module):
  47. def __init__(self,
  48. in_dims :List = [256, 512, 1024],
  49. out_dim :int = 256,
  50. depth :float = 1.0,
  51. act_type :str = 'silu',
  52. norm_type :str = 'BN',
  53. depthwise :bool = False,
  54. # Transformer's parameters
  55. num_heads :int = 8,
  56. num_layers :int = 1,
  57. mlp_ratio :float = 4.0,
  58. dropout :float = 0.1,
  59. pe_temperature :float = 10000.,
  60. en_act_type :str = 'gelu'
  61. ) -> None:
  62. super(HybridEncoder, self).__init__()
  63. print('==============================')
  64. print('FPN: {}'.format("RTC-PaFPN"))
  65. # ---------------- Basic parameters ----------------
  66. self.in_dims = in_dims
  67. self.out_dim = out_dim
  68. self.out_dims = [self.out_dim] * len(in_dims)
  69. self.depth = depth
  70. self.num_heads = num_heads
  71. self.num_layers = num_layers
  72. self.mlp_ratio = mlp_ratio
  73. c3, c4, c5 = in_dims
  74. # ---------------- Input projs ----------------
  75. self.reduce_layer_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  76. self.reduce_layer_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  77. self.reduce_layer_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  78. # ---------------- Downsample ----------------
  79. self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  80. self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  81. # ---------------- Transformer Encoder ----------------
  82. self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
  83. num_heads = num_heads,
  84. num_layers = num_layers,
  85. mlp_ratio = mlp_ratio,
  86. pe_temperature = pe_temperature,
  87. dropout = dropout,
  88. act_type = en_act_type
  89. )
  90. # ---------------- Top dwon FPN ----------------
  91. ## P5 -> P4
  92. self.top_down_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
  93. out_dim = self.out_dim,
  94. num_blocks = round(3*depth),
  95. shortcut = False,
  96. act_type = act_type,
  97. norm_type = norm_type,
  98. depthwise = depthwise,
  99. )
  100. ## P4 -> P3
  101. self.top_down_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
  102. out_dim = self.out_dim,
  103. num_blocks = round(3*depth),
  104. shortcut = False,
  105. act_type = act_type,
  106. norm_type = norm_type,
  107. depthwise = depthwise,
  108. )
  109. # ---------------- Bottom up PAN----------------
  110. ## P3 -> P4
  111. self.bottom_up_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
  112. out_dim = self.out_dim,
  113. num_blocks = round(3*depth),
  114. shortcut = False,
  115. act_type = act_type,
  116. norm_type = norm_type,
  117. depthwise = depthwise,
  118. )
  119. ## P4 -> P5
  120. self.bottom_up_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
  121. out_dim = self.out_dim,
  122. num_blocks = round(3*depth),
  123. shortcut = False,
  124. act_type = act_type,
  125. norm_type = norm_type,
  126. depthwise = depthwise,
  127. )
  128. self.init_weights()
  129. def init_weights(self):
  130. """Initialize the parameters."""
  131. for m in self.modules():
  132. if isinstance(m, torch.nn.Conv2d):
  133. # In order to be consistent with the source code,
  134. # reset the Conv2d initialization parameters
  135. m.reset_parameters()
  136. def forward(self, features):
  137. c3, c4, c5 = features
  138. # -------- Input projs --------
  139. p5 = self.reduce_layer_1(c5)
  140. p4 = self.reduce_layer_2(c4)
  141. p3 = self.reduce_layer_3(c3)
  142. # -------- Transformer encoder --------
  143. p5 = self.transformer_encoder(p5)
  144. # -------- Top down FPN --------
  145. p5_up = F.interpolate(p5, scale_factor=2.0)
  146. p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
  147. p4_up = F.interpolate(p4, scale_factor=2.0)
  148. p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
  149. # -------- Bottom up PAN --------
  150. p3_ds = self.dowmsample_layer_1(p3)
  151. p4 = self.bottom_up_layer_1(torch.cat([p4, p3_ds], dim=1))
  152. p4_ds = self.dowmsample_layer_2(p4)
  153. p5 = self.bottom_up_layer_2(torch.cat([p5, p4_ds], dim=1))
  154. out_feats = [p3, p4, p5]
  155. return out_feats
  156. ## PaddlePaddle Hybrid Encoder (Transformer encoder + Convolutional PaFPN)
  157. class PPHybridEncoder(nn.Module):
  158. def __init__(self,
  159. in_dims :List = [256, 512, 1024],
  160. out_dim :int = 256,
  161. depth :float = 1.0,
  162. expansion :float = 1.0,
  163. act_type :str = 'silu',
  164. norm_type :str = 'BN',
  165. depthwise :bool = False,
  166. # Transformer's parameters
  167. num_heads :int = 8,
  168. num_layers :int = 1,
  169. mlp_ratio :float = 4.0,
  170. dropout :float = 0.1,
  171. pe_temperature :float = 10000.,
  172. en_act_type :str = 'gelu'
  173. ) -> None:
  174. super(PPHybridEncoder, self).__init__()
  175. print('==============================')
  176. print('FPN: {}'.format("RTC-PaFPN"))
  177. # ---------------- Basic parameters ----------------
  178. self.in_dims = in_dims
  179. self.out_dim = out_dim
  180. self.out_dims = [self.out_dim] * len(in_dims)
  181. self.depth = depth
  182. self.num_heads = num_heads
  183. self.num_layers = num_layers
  184. self.mlp_ratio = mlp_ratio
  185. c3, c4, c5 = in_dims
  186. # ---------------- Input projs ----------------
  187. self.reduce_layer_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  188. self.reduce_layer_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  189. self.reduce_layer_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  190. # ---------------- Downsample ----------------
  191. self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  192. self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  193. # ---------------- Transformer Encoder ----------------
  194. self.transformer_encoder = TransformerEncoder(d_model = self.out_dim,
  195. num_heads = num_heads,
  196. num_layers = num_layers,
  197. mlp_ratio = mlp_ratio,
  198. pe_temperature = pe_temperature,
  199. dropout = dropout,
  200. act_type = en_act_type
  201. )
  202. # ---------------- Top dwon FPN ----------------
  203. ## P5 -> P4
  204. self.top_down_layer_1 = CSPRepLayer(in_dim = self.out_dim * 2,
  205. out_dim = self.out_dim,
  206. num_blocks = round(3*depth),
  207. expansion = expansion,
  208. act_type = act_type,
  209. norm_type = norm_type,
  210. )
  211. ## P4 -> P3
  212. self.top_down_layer_2 = CSPRepLayer(in_dim = self.out_dim * 2,
  213. out_dim = self.out_dim,
  214. num_blocks = round(3*depth),
  215. expansion = expansion,
  216. act_type = act_type,
  217. norm_type = norm_type,
  218. )
  219. # ---------------- Bottom up PAN----------------
  220. ## P3 -> P4
  221. self.bottom_up_layer_1 = CSPRepLayer(in_dim = self.out_dim * 2,
  222. out_dim = self.out_dim,
  223. num_blocks = round(3*depth),
  224. expansion = expansion,
  225. act_type = act_type,
  226. norm_type = norm_type,
  227. )
  228. ## P4 -> P5
  229. self.bottom_up_layer_2 = CSPRepLayer(in_dim = self.out_dim * 2,
  230. out_dim = self.out_dim,
  231. num_blocks = round(3*depth),
  232. expansion = expansion,
  233. act_type = act_type,
  234. norm_type = norm_type,
  235. )
  236. self.init_weights()
  237. def init_weights(self):
  238. """Initialize the parameters."""
  239. for m in self.modules():
  240. if isinstance(m, torch.nn.Conv2d):
  241. # In order to be consistent with the source code,
  242. # reset the Conv2d initialization parameters
  243. m.reset_parameters()
  244. def forward(self, features):
  245. c3, c4, c5 = features
  246. # -------- Input projs --------
  247. p5 = self.reduce_layer_1(c5)
  248. p4 = self.reduce_layer_2(c4)
  249. p3 = self.reduce_layer_3(c3)
  250. # -------- Transformer encoder --------
  251. p5 = self.transformer_encoder(p5)
  252. # -------- Top down FPN --------
  253. p5_up = F.interpolate(p5, scale_factor=2.0)
  254. p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
  255. p4_up = F.interpolate(p4, scale_factor=2.0)
  256. p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
  257. # -------- Bottom up PAN --------
  258. p3_ds = self.dowmsample_layer_1(p3)
  259. p4 = self.bottom_up_layer_1(torch.cat([p4, p3_ds], dim=1))
  260. p4_ds = self.dowmsample_layer_2(p4)
  261. p5 = self.bottom_up_layer_2(torch.cat([p5, p4_ds], dim=1))
  262. out_feats = [p3, p4, p5]
  263. return out_feats
  264. if __name__ == '__main__':
  265. import time
  266. from thop import profile
  267. cfg = {
  268. 'width': 1.0,
  269. 'depth': 1.0,
  270. 'fpn': 'hybrid_encoder',
  271. 'fpn_act': 'silu',
  272. 'fpn_norm': 'BN',
  273. 'fpn_depthwise': False,
  274. 'expansion': 1.0,
  275. 'en_num_heads': 8,
  276. 'en_num_layers': 1,
  277. 'en_mlp_ratio': 4.0,
  278. 'en_dropout': 0.0,
  279. 'pe_temperature': 10000.,
  280. 'en_act': 'gelu',
  281. }
  282. fpn_dims = [256, 512, 1024]
  283. out_dim = 256
  284. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)]
  285. model = build_fpn(cfg, fpn_dims, out_dim)
  286. t0 = time.time()
  287. outputs = model(pyramid_feats)
  288. t1 = time.time()
  289. print('Time: ', t1 - t0)
  290. for out in outputs:
  291. print(out.shape)
  292. print('==============================')
  293. flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
  294. print('==============================')
  295. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  296. print('Params : {:.2f} M'.format(params / 1e6))