| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196 |
- import torch
- import torch.distributed as dist
- import time
- import os
- import numpy as np
- import random
- # ----------------- Extra Components -----------------
- from utils import distributed_utils
- from utils.misc import ModelEMA, CollateFunc, build_dataloader
- from utils.misc import MetricLogger, SmoothedValue
- from utils.vis_tools import vis_data
- # ----------------- Evaluator Components -----------------
- from evaluator.build import build_evluator
- # ----------------- Optimizer & LrScheduler Components -----------------
- from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
- from utils.solver.lr_scheduler import build_lr_scheduler
- # ----------------- Dataset Components -----------------
- from dataset.build import build_dataset, build_transform
- # ----------------------- Det trainers -----------------------
- ## YOLOv8 Trainer
- class Yolov8Trainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.heavy_eval = False
- self.last_opt_step = 0
- self.clip_grad = 10
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- accumulate = max(1, round(64 / self.args.batch_size))
- print('Grad Accumulate: {}'.format(accumulate))
- self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- accumulate = accumulate = max(1, round(64 / self.args.batch_size))
- # train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # to device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- losses *= images.shape[0] # loss * bs
- # reduce
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # gradient averaged between devices in DDP mode
- losses *= distributed_utils.get_world_size()
- # backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni - self.last_opt_step >= accumulate:
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- self.last_opt_step = ni
- # display
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
-
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## YOLOX Trainer
- class YoloxTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.no_aug_epoch = args.no_aug_epoch
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
- self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch - self.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
-
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- t0 = time.time()
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(self.train_loader):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale and ni % 10 == 0:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accu
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Logs
- if distributed_utils.is_main_process() and iter_i % 10 == 0:
- t1 = time.time()
- cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
- # basic infor
- log = '[Epoch: {}/{}]'.format(self.epoch, self.args.max_epoch)
- log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
- log += '[lr: {:.6f}]'.format(cur_lr[2])
- # loss infor
- for k in loss_dict_reduced.keys():
- loss_val = loss_dict_reduced[k]
- if k == 'losses':
- loss_val *= self.grad_accumulate
- log += '[{}: {:.2f}]'.format(k, loss_val)
- # other infor
- log += '[time: {:.2f}]'.format(t1 - t0)
- log += '[size: {}]'.format(img_size)
- # print log infor
- print(log, flush=True)
-
- t0 = time.time()
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- ## Real-time Convolutional Object Detector Trainer
- class RTCTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
- losses = loss_dict['losses']
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Update log
- metric_logger.update(**loss_dict_reduced)
- metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- metric_logger.update(grad_norm=grad_norm)
- metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- # Gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- ## Real-time Transformer-based Object Detector Trainer
- class RTRTrainer(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- Basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 0.1
- self.heavy_eval = False
- # close AMP for RT-DETR
- self.args.fp16 = False
- # weak augmentatino stage
- self.second_stage = False
- self.second_stage_epoch = -1
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.0001, 'backbone_lr_ratio': 0.1}
- self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 1.0, 'warmup_iters': 2000} # no lr decay
- self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- if self.trans_cfg["mosaic_prob"] > 0.5:
- self.second_stage_epoch = 5
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= self.args.batch_size / 16. # auto lr scaling
- self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- metric_logger.add_meter('grad_norm', SmoothedValue(window_size=1, fmt='{value:.1f}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = self.lr_schedule_dict['warmup_iters']
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for x in self.optimizer.param_groups:
- x['lr'] = np.interp(ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['max_stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(img_size, targets, self.args.min_box_size)
- # xyxy -> cxcybwbh
- targets = self.box_xyxy_to_cxcywh(targets)
-
- # Visualize train targets
- if self.args.vis_tgt:
- targets = self.box_cxcywh_to_xyxy(targets)
- vis_data(images, targets, normalized_bbox=True,
- pixel_mean=self.trans_cfg['pixel_mean'], pixel_std=self.trans_cfg['pixel_std'])
- targets = self.box_xyxy_to_cxcywh(targets)
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images, targets)
- # Compute loss
- loss_dict = self.criterion(*outputs, targets)
- losses = sum(loss_dict.values())
- # Grad Accumulate
- if self.grad_accumulate > 1:
- losses /= self.grad_accumulate
- loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
- # Backward
- self.scaler.scale(losses).backward()
- # Optimize
- if ni % self.grad_accumulate == 0:
- grad_norm = None
- if self.clip_grad > 0:
- # unscale gradients
- self.scaler.unscale_(self.optimizer)
- # clip gradients
- grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
- # optimizer.step
- self.scaler.step(self.optimizer)
- self.scaler.update()
- self.optimizer.zero_grad()
- # ema
- if self.model_ema is not None:
- self.model_ema.update(model)
- # Update log
- metric_logger.update(**loss_dict_reduced)
- metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- metric_logger.update(grad_norm=grad_norm)
- metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
-
- def refine_targets(self, img_size, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- # normalize box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / img_size
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- # normalize box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / new_img_size
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def box_xyxy_to_cxcywh(self, targets):
- # rescale targets
- for tgt in targets:
- boxes_xyxy = tgt["boxes"].clone()
- # rescale box
- cxcy = (boxes_xyxy[..., :2] + boxes_xyxy[..., 2:]) * 0.5
- bwbh = boxes_xyxy[..., 2:] - boxes_xyxy[..., :2]
- boxes_bwbh = torch.cat([cxcy, bwbh], dim=-1)
- tgt["boxes"] = boxes_bwbh
- return targets
- def box_cxcywh_to_xyxy(self, targets):
- # rescale targets
- for tgt in targets:
- boxes_cxcywh = tgt["boxes"].clone()
- # rescale box
- x1y1 = boxes_cxcywh[..., :2] - boxes_cxcywh[..., 2:] * 0.5
- x2y2 = boxes_cxcywh[..., :2] + boxes_cxcywh[..., 2:] * 0.5
- boxes_bwbh = torch.cat([x1y1, x2y2], dim=-1)
- tgt["boxes"] = boxes_bwbh
- return targets
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
-
- self.train_transform.set_weak_augment()
- self.train_loader.dataset.transform = self.train_transform
-
- # ----------------------- Det + Seg trainers -----------------------
- ## RTCDet Trainer for Det + Seg
- class RTCTrainerDS(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets, self.data_cfg['num_classes'])
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg')
- det_loss_dict = loss_dict['det_loss_dict']
- seg_loss_dict = loss_dict['seg_loss_dict']
- # TODO: finish the backward + optimize
- # # Update log
- # metric_logger.update(**loss_dict_reduced)
- # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- # metric_logger.update(grad_norm=grad_norm)
- # metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- # Gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- # ----------------------- Det + Seg + Pos trainers -----------------------
- ## RTCDet Trainer for Det + Seg + HumanPose
- class RTCTrainerDSP(object):
- def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ------------------- basic parameters -------------------
- self.args = args
- self.epoch = 0
- self.best_map = -1.
- self.device = device
- self.criterion = criterion
- self.world_size = world_size
- self.grad_accumulate = args.grad_accumulate
- self.clip_grad = 35
- self.heavy_eval = False
- # weak augmentatino stage
- self.second_stage = False
- self.third_stage = False
- self.second_stage_epoch = args.no_aug_epoch
- self.third_stage_epoch = args.no_aug_epoch // 2
- # path to save model
- self.path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
- os.makedirs(self.path_to_save, exist_ok=True)
- # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
- self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
- self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
- self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
- self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
- # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
- self.data_cfg = data_cfg
- self.model_cfg = model_cfg
- self.trans_cfg = trans_cfg
- # ---------------------------- Build Transform ----------------------------
- self.train_transform, self.trans_cfg = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.val_transform, _ = build_transform(
- args=args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
- # ---------------------------- Build Dataset & Dataloader ----------------------------
- self.dataset, self.dataset_info = build_dataset(args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
- self.train_loader = build_dataloader(args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
- # ---------------------------- Build Evaluator ----------------------------
- self.evaluator = build_evluator(args, self.data_cfg, self.val_transform, self.device)
- # ---------------------------- Build Grad. Scaler ----------------------------
- self.scaler = torch.cuda.amp.GradScaler(enabled=args.fp16)
- # ---------------------------- Build Optimizer ----------------------------
- self.optimizer_dict['lr0'] *= args.batch_size * self.grad_accumulate / 64
- self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, args.resume)
- # ---------------------------- Build LR Scheduler ----------------------------
- self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, args.max_epoch - args.no_aug_epoch)
- self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
- if self.args.resume and self.args.resume != 'None':
- self.lr_scheduler.step()
- # ---------------------------- Build Model-EMA ----------------------------
- if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
- print('Build ModelEMA ...')
- self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
- else:
- self.model_ema = None
- def train(self, model):
- for epoch in range(self.start_epoch, self.args.max_epoch):
- if self.args.distributed:
- self.train_loader.batch_sampler.sampler.set_epoch(epoch)
- # check second stage
- if epoch >= (self.args.max_epoch - self.second_stage_epoch - 1) and not self.second_stage:
- self.check_second_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_mosaic_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last Mosaic epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # check third stage
- if epoch >= (self.args.max_epoch - self.third_stage_epoch - 1) and not self.third_stage:
- self.check_third_stage()
- # save model of the last mosaic epoch
- weight_name = '{}_last_weak_augment_epoch.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- print('Saving state of the last weak augment epoch-{}.'.format(self.epoch))
- torch.save({'model': model.state_dict(),
- 'mAP': round(self.evaluator.map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # train one epoch
- self.epoch = epoch
- self.train_one_epoch(model)
- # eval one epoch
- if self.heavy_eval:
- model_eval = model.module if self.args.distributed else model
- self.eval(model_eval)
- else:
- model_eval = model.module if self.args.distributed else model
- if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
- self.eval(model_eval)
- if self.args.debug:
- print("For debug mode, we only train 1 epoch")
- break
- def eval(self, model):
- # chech model
- model_eval = model if self.model_ema is None else self.model_ema.ema
- if distributed_utils.is_main_process():
- # check evaluator
- if self.evaluator is None:
- print('No evaluator ... save model and go on training.')
- print('Saving state, epoch: {}'.format(self.epoch))
- weight_name = '{}_no_eval.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': -1.,
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- else:
- print('eval ...')
- # set eval mode
- model_eval.trainable = False
- model_eval.eval()
- # evaluate
- with torch.no_grad():
- self.evaluator.evaluate(model_eval)
- # save model
- cur_map = self.evaluator.map
- if cur_map > self.best_map:
- # update best-map
- self.best_map = cur_map
- # save model
- print('Saving state, epoch:', self.epoch)
- weight_name = '{}_best.pth'.format(self.args.model)
- checkpoint_path = os.path.join(self.path_to_save, weight_name)
- torch.save({'model': model_eval.state_dict(),
- 'mAP': round(self.best_map*100, 1),
- 'optimizer': self.optimizer.state_dict(),
- 'epoch': self.epoch,
- 'args': self.args},
- checkpoint_path)
- # set train mode.
- model_eval.trainable = True
- model_eval.train()
- if self.args.distributed:
- # wait for all processes to synchronize
- dist.barrier()
- def train_one_epoch(self, model):
- metric_logger = MetricLogger(delimiter=" ")
- metric_logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
- metric_logger.add_meter('size', SmoothedValue(window_size=1, fmt='{value:d}'))
- header = 'Epoch: [{} / {}]'.format(self.epoch, self.args.max_epoch)
- epoch_size = len(self.train_loader)
- print_freq = 10
- # basic parameters
- epoch_size = len(self.train_loader)
- img_size = self.args.img_size
- nw = epoch_size * self.args.wp_epoch
- # Train one epoch
- for iter_i, (images, targets) in enumerate(metric_logger.log_every(self.train_loader, print_freq, header)):
- ni = iter_i + self.epoch * epoch_size
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- for j, x in enumerate(self.optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(
- ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
-
- # To device
- images = images.to(self.device, non_blocking=True).float()
- # Multi scale
- if self.args.multi_scale:
- images, targets, img_size = self.rescale_image_targets(
- images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
- else:
- targets = self.refine_targets(targets, self.args.min_box_size)
-
- # Visualize train targets
- if self.args.vis_tgt:
- vis_data(images*255, targets, self.data_cfg['num_classes'])
- # Inference
- with torch.cuda.amp.autocast(enabled=self.args.fp16):
- outputs = model(images)
- # Compute loss
- loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch, task='det_seg_pos')
- det_loss_dict = loss_dict['det_loss_dict']
- seg_loss_dict = loss_dict['seg_loss_dict']
- pos_loss_dict = loss_dict['pos_loss_dict']
-
- # TODO: finish the backward + optimize
- # # Update log
- # metric_logger.update(**loss_dict_reduced)
- # metric_logger.update(lr=self.optimizer.param_groups[2]["lr"])
- # metric_logger.update(grad_norm=grad_norm)
- # metric_logger.update(size=img_size)
- if self.args.debug:
- print("For debug mode, we only train 1 iteration")
- break
- # LR Schedule
- if not self.second_stage:
- self.lr_scheduler.step()
- # Gather the stats from all processes
- metric_logger.synchronize_between_processes()
- print("Averaged stats:", metric_logger)
- def refine_targets(self, targets, min_box_size):
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
-
- return targets
- def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
- """
- Deployed for Multi scale trick.
- """
- if isinstance(stride, int):
- max_stride = stride
- elif isinstance(stride, list):
- max_stride = max(stride)
- # During training phase, the shape of input image is square.
- old_img_size = images.shape[-1]
- new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
- new_img_size = new_img_size // max_stride * max_stride # size
- if new_img_size / old_img_size != 1:
- # interpolate
- images = torch.nn.functional.interpolate(
- input=images,
- size=new_img_size,
- mode='bilinear',
- align_corners=False)
- # rescale targets
- for tgt in targets:
- boxes = tgt["boxes"].clone()
- labels = tgt["labels"].clone()
- boxes = torch.clamp(boxes, 0, old_img_size)
- # rescale box
- boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
- boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
- # refine tgt
- tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
- min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
- keep = (min_tgt_size >= min_box_size)
- tgt["boxes"] = boxes[keep]
- tgt["labels"] = labels[keep]
- return images, targets, new_img_size
- def check_second_stage(self):
- # set second stage
- print('============== Second stage of Training ==============')
- self.second_stage = True
- # close mosaic augmentation
- if self.train_loader.dataset.mosaic_prob > 0.:
- print(' - Close < Mosaic Augmentation > ...')
- self.train_loader.dataset.mosaic_prob = 0.
- self.heavy_eval = True
- # close mixup augmentation
- if self.train_loader.dataset.mixup_prob > 0.:
- print(' - Close < Mixup Augmentation > ...')
- self.train_loader.dataset.mixup_prob = 0.
- self.heavy_eval = True
- # close rotation augmentation
- if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
- print(' - Close < degress of rotation > ...')
- self.trans_cfg['degrees'] = 0.0
- if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
- print(' - Close < shear of rotation >...')
- self.trans_cfg['shear'] = 0.0
- if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
- print(' - Close < perspective of rotation > ...')
- self.trans_cfg['perspective'] = 0.0
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- def check_third_stage(self):
- # set third stage
- print('============== Third stage of Training ==============')
- self.third_stage = True
- # close random affine
- if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
- print(' - Close < translate of affine > ...')
- self.trans_cfg['translate'] = 0.0
- if 'scale' in self.trans_cfg.keys():
- print(' - Close < scale of affine >...')
- self.trans_cfg['scale'] = [1.0, 1.0]
- # build a new transform for second stage
- print(' - Rebuild transforms ...')
- self.train_transform, self.trans_cfg = build_transform(
- args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
- self.train_loader.dataset.transform = self.train_transform
-
- # Build Trainer
- def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
- # ----------------------- Det trainers -----------------------
- if model_cfg['trainer_type'] == 'yolov8':
- return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'yolox':
- return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtcdet':
- return RTCTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- elif model_cfg['trainer_type'] == 'rtdetr':
- return RTRTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
-
- # ----------------------- Det + Seg trainers -----------------------
- elif model_cfg['trainer_type'] == 'rtcdet_ds':
- return RTCTrainerDS(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- # ----------------------- Det + Seg + Pos trainers -----------------------
- elif model_cfg['trainer_type'] == 'rtcdet_dsp':
- return RTCTrainerDSP(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
- else:
- raise NotImplementedError(model_cfg['trainer_type'])
-
|