README.md 2.2 KB

Redesigned YOLOv2:

  • For training, we train redesigned YOLOv2 with 150 epochs on COCO.
  • For data augmentation, we only use the large scale jitter (LSJ), no Mosaic or Mixup augmentation.
  • For optimizer, we use SGD with momentum 0.937, weight decay 0.0005 and base lr 0.01.
  • For learning rate scheduler, we use linear decay scheduler.

Train YOLOv2

Single GPU

Taking training YOLOv2 on COCO as the example,

python train.py --cuda -d coco --root path/to/coco -m yolov2 -bs 16 -size 640 --wp_epoch 3 --max_epoch 200 --eval_epoch 10 --no_aug_epoch 15 --ema --fp16 --multi_scale 

Multi GPU

Taking training YOLOv2 on COCO as the example,

python -m torch.distributed.run --nproc_per_node=8 train.py --cuda -dist -d coco --root /data/datasets/ -m yolov2 -bs 128 -size 640 --wp_epoch 3 --max_epoch 200  --eval_epoch 10 --no_aug_epoch 15 --ema --fp16 --sybn --multi_scale --save_folder weights/ 

Test YOLOv2

Taking testing YOLOv2 on COCO-val as the example,

python test.py --cuda -d coco --root path/to/coco -m yolov2 --weight path/to/yolov2_coco.pth -size 640 --show 

Evaluate YOLOv2

Taking evaluating YOLOv2 on COCO-val as the example,

python eval.py --cuda -d coco --root path/to/coco -m yolov2 --weight path/to/yolov2_coco.pth

Demo

Detect with Image

python demo.py --mode image --path_to_img path/to/image_dirs/ --cuda -m yolov2 --weight path/to/yolov2_coco.pth -size 640 --show

Detect with Video

python demo.py --mode video --path_to_vid path/to/video --cuda -m yolov2 --weight path/to/yolov2_coco.pth -size 640 --show --gif

Detect with Camera

python demo.py --mode camera --cuda -m yolov2 --weight path/to/yolov2_coco.pth -size 640 --show --gif
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOv2 DarkNet-19 1xb16 640 32.7 50.9 53.9 30.9 ckpt