yolov4.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. import torch
  2. import torch.nn as nn
  3. from utils.nms import multiclass_nms
  4. from .yolov4_backbone import build_backbone
  5. from .yolov4_neck import build_neck
  6. from .yolov4_fpn import build_fpn
  7. from .yolov4_head import build_head
  8. # YOLOv4
  9. class YOLOv4(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv4, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = [8, 16, 32] # 网络的输出步长
  28. # ------------------- Anchor box -------------------
  29. self.num_levels = 3
  30. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  31. self.anchor_size = torch.as_tensor(
  32. cfg['anchor_size']
  33. ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  34. # ------------------- Network Structure -------------------
  35. ## 主干网络
  36. self.backbone, feats_dim = build_backbone(
  37. cfg['backbone'], trainable&cfg['pretrained'])
  38. ## 颈部网络: SPP模块
  39. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  40. feats_dim[-1] = self.neck.out_dim
  41. ## 颈部网络: 特征金字塔
  42. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  43. self.head_dim = self.fpn.out_dim
  44. ## 检测头
  45. self.non_shared_heads = nn.ModuleList(
  46. [build_head(cfg, head_dim, head_dim, num_classes)
  47. for head_dim in self.head_dim
  48. ])
  49. ## 预测层
  50. self.obj_preds = nn.ModuleList(
  51. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  52. for head in self.non_shared_heads
  53. ])
  54. self.cls_preds = nn.ModuleList(
  55. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  56. for head in self.non_shared_heads
  57. ])
  58. self.reg_preds = nn.ModuleList(
  59. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  60. for head in self.non_shared_heads
  61. ])
  62. # --------- Network Initialization ----------
  63. self.init_yolo()
  64. def init_yolo(self):
  65. # Init yolo
  66. for m in self.modules():
  67. if isinstance(m, nn.BatchNorm2d):
  68. m.eps = 1e-3
  69. m.momentum = 0.03
  70. # Init bias
  71. init_prob = 0.01
  72. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  73. # obj pred
  74. for obj_pred in self.obj_preds:
  75. b = obj_pred.bias.view(self.num_anchors, -1)
  76. b.data.fill_(bias_value.item())
  77. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  78. # cls pred
  79. for cls_pred in self.cls_preds:
  80. b = cls_pred.bias.view(self.num_anchors, -1)
  81. b.data.fill_(bias_value.item())
  82. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  83. def generate_anchors(self, level, fmp_size):
  84. """
  85. fmp_size: (List) [H, W]
  86. """
  87. fmp_h, fmp_w = fmp_size
  88. # [KA, 2]
  89. anchor_size = self.anchor_size[level]
  90. # generate grid cells
  91. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  92. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  93. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  94. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  95. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  96. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  97. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  98. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  99. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  100. return anchors
  101. def decode_boxes(self, level, anchors, reg_pred):
  102. """
  103. 将txtytwth转换为常用的x1y1x2y2形式。
  104. """
  105. # 计算预测边界框的中心点坐标和宽高
  106. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  107. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  108. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  109. pred_x1y1 = pred_ctr - pred_wh * 0.5
  110. pred_x2y2 = pred_ctr + pred_wh * 0.5
  111. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  112. return pred_box
  113. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  114. """
  115. Input:
  116. obj_preds: List(Tensor) [[H x W, 1], ...]
  117. cls_preds: List(Tensor) [[H x W, C], ...]
  118. reg_preds: List(Tensor) [[H x W, 4], ...]
  119. anchors: List(Tensor) [[H x W, 2], ...]
  120. """
  121. all_scores = []
  122. all_labels = []
  123. all_bboxes = []
  124. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchor_i) \
  125. in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  126. # (H x W x KA x C,)
  127. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  128. # Keep top k top scoring indices only.
  129. num_topk = min(self.topk, reg_pred_i.size(0))
  130. # torch.sort is actually faster than .topk (at least on GPUs)
  131. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  132. topk_scores = predicted_prob[:num_topk]
  133. topk_idxs = topk_idxs[:num_topk]
  134. # filter out the proposals with low confidence score
  135. keep_idxs = topk_scores > self.conf_thresh
  136. scores = topk_scores[keep_idxs]
  137. topk_idxs = topk_idxs[keep_idxs]
  138. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  139. labels = topk_idxs % self.num_classes
  140. reg_pred_i = reg_pred_i[anchor_idxs]
  141. anchor_i = anchor_i[anchor_idxs]
  142. # decode box: [M, 4]
  143. bboxes = self.decode_boxes(level, anchor_i, reg_pred_i)
  144. all_scores.append(scores)
  145. all_labels.append(labels)
  146. all_bboxes.append(bboxes)
  147. scores = torch.cat(all_scores)
  148. labels = torch.cat(all_labels)
  149. bboxes = torch.cat(all_bboxes)
  150. # to cpu & numpy
  151. scores = scores.cpu().numpy()
  152. labels = labels.cpu().numpy()
  153. bboxes = bboxes.cpu().numpy()
  154. # nms
  155. scores, labels, bboxes = multiclass_nms(
  156. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  157. return bboxes, scores, labels
  158. @torch.no_grad()
  159. def inference(self, x):
  160. # 主干网络
  161. pyramid_feats = self.backbone(x)
  162. # 颈部网络
  163. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  164. # 特征金字塔
  165. pyramid_feats = self.fpn(pyramid_feats)
  166. # 检测头
  167. all_anchors = []
  168. all_obj_preds = []
  169. all_cls_preds = []
  170. all_reg_preds = []
  171. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  172. cls_feat, reg_feat = head(feat)
  173. # [1, C, H, W]
  174. obj_pred = self.obj_preds[level](reg_feat)
  175. cls_pred = self.cls_preds[level](cls_feat)
  176. reg_pred = self.reg_preds[level](reg_feat)
  177. # anchors: [M, 2]
  178. fmp_size = cls_pred.shape[-2:]
  179. anchors = self.generate_anchors(level, fmp_size)
  180. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  181. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  182. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  183. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  184. all_obj_preds.append(obj_pred)
  185. all_cls_preds.append(cls_pred)
  186. all_reg_preds.append(reg_pred)
  187. all_anchors.append(anchors)
  188. # post process
  189. bboxes, scores, labels = self.post_process(
  190. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  191. return bboxes, scores, labels
  192. def forward(self, x):
  193. if not self.trainable:
  194. return self.inference(x)
  195. else:
  196. bs = x.shape[0]
  197. # 主干网络
  198. pyramid_feats = self.backbone(x)
  199. # 颈部网络
  200. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  201. # 特征金字塔
  202. pyramid_feats = self.fpn(pyramid_feats)
  203. # 检测头
  204. all_fmp_sizes = []
  205. all_obj_preds = []
  206. all_cls_preds = []
  207. all_box_preds = []
  208. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  209. cls_feat, reg_feat = head(feat)
  210. # [B, C, H, W]
  211. obj_pred = self.obj_preds[level](reg_feat)
  212. cls_pred = self.cls_preds[level](cls_feat)
  213. reg_pred = self.reg_preds[level](reg_feat)
  214. fmp_size = cls_pred.shape[-2:]
  215. # generate anchor boxes: [M, 4]
  216. anchors = self.generate_anchors(level, fmp_size)
  217. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  218. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  219. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  220. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  221. # decode bbox
  222. box_pred = self.decode_boxes(level, anchors, reg_pred)
  223. all_obj_preds.append(obj_pred)
  224. all_cls_preds.append(cls_pred)
  225. all_box_preds.append(box_pred)
  226. all_fmp_sizes.append(fmp_size)
  227. # output dict
  228. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  229. "pred_cls": all_cls_preds, # List [B, M, C]
  230. "pred_box": all_box_preds, # List [B, M, 4]
  231. 'fmp_sizes': all_fmp_sizes, # List
  232. 'strides': self.stride, # List
  233. }
  234. return outputs