rtcdet_pred.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. import math
  2. import torch
  3. import torch.nn as nn
  4. def build_pred(cls_dim, reg_dim, strides, num_classes, num_coords=4, num_levels=3):
  5. pred_layers = MDetPDLayer(cls_dim = cls_dim,
  6. reg_dim = reg_dim,
  7. strides = strides,
  8. num_classes = num_classes,
  9. num_coords = num_coords,
  10. num_levels = num_levels)
  11. return pred_layers
  12. # ---------------------------- Detection predictor ----------------------------
  13. ## Single-level Detection Prediction Layer
  14. class SDetPDLayer(nn.Module):
  15. def __init__(self,
  16. cls_dim :int = 256,
  17. reg_dim :int = 256,
  18. stride :int = 32,
  19. num_classes :int = 80,
  20. num_coords :int = 4):
  21. super().__init__()
  22. # --------- Basic Parameters ----------
  23. self.stride = stride
  24. self.cls_dim = cls_dim
  25. self.reg_dim = reg_dim
  26. self.num_classes = num_classes
  27. self.num_coords = num_coords
  28. # --------- Network Parameters ----------
  29. self.cls_pred = nn.Conv2d(cls_dim, num_classes, kernel_size=1)
  30. self.reg_pred = nn.Conv2d(reg_dim, num_coords, kernel_size=1)
  31. self.init_bias()
  32. def init_bias(self):
  33. # cls pred bias
  34. b = self.cls_pred.bias.view(1, -1)
  35. b.data.fill_(math.log(5 / self.num_classes / (640. / self.stride) ** 2))
  36. self.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  37. # reg pred bias
  38. b = self.reg_pred.bias.view(-1, )
  39. b.data.fill_(1.0)
  40. self.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  41. def generate_anchors(self, fmp_size):
  42. """
  43. fmp_size: (List) [H, W]
  44. """
  45. # generate grid cells
  46. fmp_h, fmp_w = fmp_size
  47. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  48. # [H, W, 2] -> [HW, 2]
  49. anchors = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  50. anchors += 0.5 # add center offset
  51. anchors *= self.stride
  52. return anchors
  53. def forward(self, cls_feat, reg_feat):
  54. # pred
  55. cls_pred = self.cls_pred(cls_feat)
  56. reg_pred = self.reg_pred(reg_feat)
  57. # generate anchor boxes: [M, 4]
  58. B, _, H, W = cls_pred.size()
  59. fmp_size = [H, W]
  60. anchors = self.generate_anchors(fmp_size)
  61. anchors = anchors.to(cls_pred.device)
  62. # stride tensor: [M, 1]
  63. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride
  64. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  65. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  66. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  67. # ---------------- Decode bbox ----------------
  68. ctr_pred = reg_pred[..., :2] * self.stride + anchors[..., :2]
  69. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride
  70. pred_x1y1 = ctr_pred - wh_pred * 0.5
  71. pred_x2y2 = ctr_pred + wh_pred * 0.5
  72. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  73. # output dict
  74. outputs = {"pred_cls": cls_pred, # (Tensor) [B, M, C]
  75. "pred_reg": reg_pred, # (Tensor) [B, M, 4]
  76. "pred_box": box_pred, # (Tensor) [B, M, 4]
  77. "anchors": anchors, # (Tensor) [M, 2]
  78. "stride": self.stride, # (Int)
  79. "stride_tensors": stride_tensor # List(Tensor) [M, 1]
  80. }
  81. return outputs
  82. ## Multi-level pred layer
  83. class MDetPDLayer(nn.Module):
  84. def __init__(self,
  85. cls_dim,
  86. reg_dim,
  87. strides,
  88. num_classes :int = 80,
  89. num_coords :int = 4,
  90. num_levels :int = 3):
  91. super().__init__()
  92. # --------- Basic Parameters ----------
  93. self.cls_dim = cls_dim
  94. self.reg_dim = reg_dim
  95. self.strides = strides
  96. self.num_classes = num_classes
  97. self.num_coords = num_coords
  98. self.num_levels = num_levels
  99. # ----------- Network Parameters -----------
  100. ## multi-level pred layers
  101. self.multi_level_preds = nn.ModuleList(
  102. [SDetPDLayer(cls_dim = cls_dim,
  103. reg_dim = reg_dim,
  104. stride = strides[level],
  105. num_classes = num_classes,
  106. num_coords = num_coords)
  107. for level in range(num_levels)
  108. ])
  109. def forward(self, inputs):
  110. all_anchors = []
  111. all_strides = []
  112. all_cls_preds = []
  113. all_box_preds = []
  114. all_reg_preds = []
  115. cls_feats, reg_feats = inputs["cls_feat"], inputs["reg_feat"]
  116. for level in range(self.num_levels):
  117. # ---------------- Single level prediction ----------------
  118. outputs = self.multi_level_preds[level](cls_feats[level], reg_feats[level])
  119. # collect results
  120. all_cls_preds.append(outputs["pred_cls"])
  121. all_box_preds.append(outputs["pred_box"])
  122. all_reg_preds.append(outputs["pred_reg"])
  123. all_anchors.append(outputs["anchors"])
  124. all_strides.append(outputs["stride_tensors"])
  125. # output dict
  126. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  127. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  128. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4]
  129. "anchors": all_anchors, # List(Tensor) [M, 2]
  130. "strides": self.strides, # List(Int) [8, 16, 32]
  131. "stride_tensors": all_strides # List(Tensor) [M, 1]
  132. }
  133. return outputs