rtcdet.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. # --------------- Model components ---------------
  5. from .rtcdet_backbone import build_backbone
  6. from .rtcdet_neck import build_neck
  7. from .rtcdet_pafpn import build_fpn
  8. from .rtcdet_head import build_head
  9. from .rtcdet_pred import build_pred
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # Real-time Convolutional General Object Detector
  13. class RTCDet(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 20,
  18. conf_thresh = 0.01,
  19. nms_thresh = 0.5,
  20. topk = 1000,
  21. trainable = False,
  22. deploy = False,
  23. no_multi_labels = False,
  24. nms_class_agnostic = False,
  25. ):
  26. super(RTCDet, self).__init__()
  27. # ---------------- Basic Parameters ----------------
  28. self.cfg = cfg
  29. self.device = device
  30. self.strides = cfg['stride']
  31. self.num_classes = num_classes
  32. self.trainable = trainable
  33. self.conf_thresh = conf_thresh
  34. self.nms_thresh = nms_thresh
  35. self.num_levels = len(self.strides)
  36. self.num_classes = num_classes
  37. self.topk_candidates = topk
  38. self.deploy = deploy
  39. self.no_multi_labels = no_multi_labels
  40. self.nms_class_agnostic = nms_class_agnostic
  41. self.head_dim = round(256 * cfg['width'])
  42. # ---------------- Network Parameters ----------------
  43. ## ----------- Backbone -----------
  44. self.backbone, feat_dims = build_backbone(cfg, pretrained=cfg['bk_pretrained']&trainable)
  45. ## ----------- Neck: SPP -----------
  46. self.neck = build_neck(cfg, feat_dims[-1], feat_dims[-1])
  47. feat_dims[-1] = self.neck.out_dim
  48. ## ----------- Neck: FPN -----------
  49. self.fpn = build_fpn(cfg, feat_dims, out_dim=self.head_dim)
  50. self.fpn_dims = self.fpn.out_dim
  51. ## ----------- Head -----------
  52. self.head = build_head(cfg, self.fpn_dims, self.head_dim, self.num_levels)
  53. ## ----------- Pred -----------
  54. self.pred = build_pred(self.head_dim, self.head_dim, self.strides, num_classes, 4, self.num_levels)
  55. # Post process
  56. def post_process(self, cls_preds, box_preds):
  57. """
  58. Input:
  59. cls_preds: List[np.array] -> [[M, C], ...]
  60. box_preds: List[np.array] -> [[M, 4], ...]
  61. Output:
  62. bboxes: np.array -> [N, 4]
  63. scores: np.array -> [N,]
  64. labels: np.array -> [N,]
  65. """
  66. assert len(cls_preds) == self.num_levels
  67. all_scores = []
  68. all_labels = []
  69. all_bboxes = []
  70. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  71. cls_pred_i = cls_pred_i[0]
  72. box_pred_i = box_pred_i[0]
  73. if self.no_multi_labels:
  74. # [M,]
  75. scores, labels = torch.max(cls_pred_i.sigmoid(), dim=1)
  76. # Keep top k top scoring indices only.
  77. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  78. # topk candidates
  79. predicted_prob, topk_idxs = scores.sort(descending=True)
  80. topk_scores = predicted_prob[:num_topk]
  81. topk_idxs = topk_idxs[:num_topk]
  82. # filter out the proposals with low confidence score
  83. keep_idxs = topk_scores > self.conf_thresh
  84. scores = topk_scores[keep_idxs]
  85. topk_idxs = topk_idxs[keep_idxs]
  86. labels = labels[topk_idxs]
  87. bboxes = box_pred_i[topk_idxs]
  88. else:
  89. # [M, C] -> [MC,]
  90. scores_i = cls_pred_i.sigmoid().flatten()
  91. # Keep top k top scoring indices only.
  92. num_topk = min(self.topk_candidates, box_pred_i.size(0))
  93. # torch.sort is actually faster than .topk (at least on GPUs)
  94. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  95. topk_scores = predicted_prob[:num_topk]
  96. topk_idxs = topk_idxs[:num_topk]
  97. # filter out the proposals with low confidence score
  98. keep_idxs = topk_scores > self.conf_thresh
  99. scores = topk_scores[keep_idxs]
  100. topk_idxs = topk_idxs[keep_idxs]
  101. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  102. labels = topk_idxs % self.num_classes
  103. bboxes = box_pred_i[anchor_idxs]
  104. all_scores.append(scores)
  105. all_labels.append(labels)
  106. all_bboxes.append(bboxes)
  107. scores = torch.cat(all_scores, dim=0)
  108. labels = torch.cat(all_labels, dim=0)
  109. bboxes = torch.cat(all_bboxes, dim=0)
  110. # to cpu & numpy
  111. scores = scores.cpu().numpy()
  112. labels = labels.cpu().numpy()
  113. bboxes = bboxes.cpu().numpy()
  114. # nms
  115. scores, labels, bboxes = multiclass_nms(
  116. scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)
  117. return bboxes, scores, labels
  118. def forward_det_task(self, x):
  119. # ---------------- Heads ----------------
  120. outputs = self.head['det'](x)
  121. # ---------------- Post-process ----------------
  122. if self.trainable:
  123. return outputs
  124. else:
  125. all_cls_preds = outputs['pred_cls']
  126. all_box_preds = outputs['pred_box']
  127. if self.deploy:
  128. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  129. box_preds = torch.cat(all_box_preds, dim=1)[0]
  130. scores = cls_preds.sigmoid()
  131. bboxes = box_preds
  132. # [n_anchors_all, 4 + C]
  133. outputs = torch.cat([bboxes, scores], dim=-1)
  134. return outputs
  135. else:
  136. # post process
  137. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  138. return bboxes, scores, labels
  139. # Main process
  140. def forward(self, x):
  141. # ---------------- Backbone ----------------
  142. pyramid_feats = self.backbone(x)
  143. # ---------------- Neck: SPP ----------------
  144. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  145. # ---------------- Neck: PaFPN ----------------
  146. pyramid_feats = self.fpn(pyramid_feats)
  147. # ---------------- Head ----------------
  148. pyramid_feats = self.head(pyramid_feats)
  149. # ---------------- Pred ----------------
  150. outputs = self.pred(pyramid_feats)
  151. # ---------------- Post-process ----------------
  152. if self.trainable:
  153. return outputs
  154. else:
  155. all_cls_preds = outputs['pred_cls']
  156. all_box_preds = outputs['pred_box']
  157. if self.deploy:
  158. cls_preds = torch.cat(all_cls_preds, dim=1)[0]
  159. box_preds = torch.cat(all_box_preds, dim=1)[0]
  160. scores = cls_preds.sigmoid()
  161. bboxes = box_preds
  162. # [n_anchors_all, 4 + C]
  163. outputs = torch.cat([bboxes, scores], dim=-1)
  164. return outputs
  165. else:
  166. # post process
  167. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  168. return bboxes, scores, labels