loss.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. import torch
  2. import torch.nn.functional as F
  3. from .matcher import SimOTA
  4. from utils.box_ops import get_ious
  5. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  6. class Criterion(object):
  7. def __init__(self,
  8. args,
  9. cfg,
  10. device,
  11. num_classes=80):
  12. self.args = args
  13. self.cfg = cfg
  14. self.device = device
  15. self.num_classes = num_classes
  16. self.max_epoch = args.max_epoch
  17. self.no_aug_epoch = args.no_aug_epoch
  18. self.aux_bbox_loss = False
  19. # loss weight
  20. self.loss_obj_weight = cfg['loss_obj_weight']
  21. self.loss_cls_weight = cfg['loss_cls_weight']
  22. self.loss_box_weight = cfg['loss_box_weight']
  23. # matcher
  24. matcher_config = cfg['matcher']
  25. self.matcher = SimOTA(
  26. num_classes=num_classes,
  27. center_sampling_radius=matcher_config['center_sampling_radius'],
  28. topk_candidate=matcher_config['topk_candicate']
  29. )
  30. def loss_objectness(self, pred_obj, gt_obj):
  31. loss_obj = F.binary_cross_entropy_with_logits(pred_obj, gt_obj, reduction='none')
  32. return loss_obj
  33. def loss_classes(self, pred_cls, gt_label):
  34. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_label, reduction='none')
  35. return loss_cls
  36. def loss_bboxes(self, pred_box, gt_box):
  37. # regression loss
  38. ious = get_ious(pred_box, gt_box, "xyxy", 'giou')
  39. loss_box = 1.0 - ious
  40. return loss_box
  41. def __call__(self, outputs, targets, epoch=0):
  42. """
  43. outputs['pred_obj']: List(Tensor) [B, M, 1]
  44. outputs['pred_cls']: List(Tensor) [B, M, C]
  45. outputs['pred_box']: List(Tensor) [B, M, 4]
  46. outputs['pred_box']: List(Tensor) [B, M, 4]
  47. outputs['strides']: List(Int) [8, 16, 32] output stride
  48. targets: (List) [dict{'boxes': [...],
  49. 'labels': [...],
  50. 'orig_size': ...}, ...]
  51. """
  52. bs = outputs['pred_cls'][0].shape[0]
  53. device = outputs['pred_cls'][0].device
  54. fpn_strides = outputs['strides']
  55. anchors = outputs['anchors']
  56. # preds: [B, M, C]
  57. obj_preds = torch.cat(outputs['pred_obj'], dim=1)
  58. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  59. box_preds = torch.cat(outputs['pred_box'], dim=1)
  60. # label assignment
  61. cls_targets = []
  62. box_targets = []
  63. obj_targets = []
  64. fg_masks = []
  65. for batch_idx in range(bs):
  66. tgt_labels = targets[batch_idx]["labels"].to(device)
  67. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  68. # check target
  69. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  70. num_anchors = sum([ab.shape[0] for ab in anchors])
  71. # There is no valid gt
  72. cls_target = obj_preds.new_zeros((0, self.num_classes))
  73. box_target = obj_preds.new_zeros((0, 4))
  74. obj_target = obj_preds.new_zeros((num_anchors, 1))
  75. fg_mask = obj_preds.new_zeros(num_anchors).bool()
  76. else:
  77. (
  78. fg_mask,
  79. assigned_labels,
  80. assigned_ious,
  81. assigned_indexs
  82. ) = self.matcher(
  83. fpn_strides = fpn_strides,
  84. anchors = anchors,
  85. pred_obj = obj_preds[batch_idx],
  86. pred_cls = cls_preds[batch_idx],
  87. pred_box = box_preds[batch_idx],
  88. tgt_labels = tgt_labels,
  89. tgt_bboxes = tgt_bboxes
  90. )
  91. obj_target = fg_mask.unsqueeze(-1)
  92. cls_target = F.one_hot(assigned_labels.long(), self.num_classes)
  93. cls_target = cls_target * assigned_ious.unsqueeze(-1)
  94. box_target = tgt_bboxes[assigned_indexs]
  95. cls_targets.append(cls_target)
  96. box_targets.append(box_target)
  97. obj_targets.append(obj_target)
  98. fg_masks.append(fg_mask)
  99. cls_targets = torch.cat(cls_targets, 0)
  100. box_targets = torch.cat(box_targets, 0)
  101. obj_targets = torch.cat(obj_targets, 0)
  102. fg_masks = torch.cat(fg_masks, 0)
  103. num_fgs = fg_masks.sum()
  104. if is_dist_avail_and_initialized():
  105. torch.distributed.all_reduce(num_fgs)
  106. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  107. # ------------------ Objecntness loss ------------------
  108. loss_obj = self.loss_objectness(obj_preds.view(-1, 1), obj_targets.float())
  109. loss_obj = loss_obj.sum() / num_fgs
  110. # ------------------ Classification loss ------------------
  111. cls_preds_pos = cls_preds.view(-1, self.num_classes)[fg_masks]
  112. loss_cls = self.loss_classes(cls_preds_pos, cls_targets)
  113. loss_cls = loss_cls.sum() / num_fgs
  114. # ------------------ Regression loss ------------------
  115. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  116. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  117. loss_box = loss_box.sum() / num_fgs
  118. # total loss
  119. losses = self.loss_obj_weight * loss_obj + \
  120. self.loss_cls_weight * loss_cls + \
  121. self.loss_box_weight * loss_box
  122. # Loss dict
  123. loss_dict = dict(
  124. loss_obj = loss_obj,
  125. loss_cls = loss_cls,
  126. loss_box = loss_box,
  127. losses = losses
  128. )
  129. return loss_dict
  130. def build_criterion(args, cfg, device, num_classes):
  131. criterion = Criterion(
  132. args=args,
  133. cfg=cfg,
  134. device=device,
  135. num_classes=num_classes
  136. )
  137. return criterion
  138. if __name__ == "__main__":
  139. pass