build.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. import os
  2. try:
  3. from .voc import VOCDataset
  4. from .coco import COCODataset
  5. from .ourdataset import OurDataset
  6. from .data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  7. from .data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  8. except:
  9. from voc import VOCDataset
  10. from coco import COCODataset
  11. from ourdataset import OurDataset
  12. from data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  13. from data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  14. # ------------------------------ Dataset ------------------------------
  15. def build_dataset(args, data_cfg, trans_config, transform, is_train=False):
  16. # ------------------------- Basic parameters -------------------------
  17. data_dir = os.path.join(args.root, data_cfg['data_name'])
  18. num_classes = data_cfg['num_classes']
  19. class_names = data_cfg['class_names']
  20. class_indexs = data_cfg['class_indexs']
  21. dataset_info = {
  22. 'num_classes': num_classes,
  23. 'class_names': class_names,
  24. 'class_indexs': class_indexs
  25. }
  26. # ------------------------- Build dataset -------------------------
  27. ## VOC dataset
  28. if args.dataset == 'voc':
  29. image_sets = [('2007', 'trainval'), ('2012', 'trainval')] if is_train else [('2007', 'test')]
  30. dataset = VOCDataset(img_size = args.img_size,
  31. data_dir = data_dir,
  32. image_sets = image_sets,
  33. transform = transform,
  34. trans_config = trans_config,
  35. is_train = is_train,
  36. load_cache = args.load_cache
  37. )
  38. ## COCO dataset
  39. elif args.dataset == 'coco':
  40. image_set = 'train2017' if is_train else 'val2017',
  41. dataset = COCODataset(img_size = args.img_size,
  42. data_dir = data_dir,
  43. image_set = image_set,
  44. transform = transform,
  45. trans_config = trans_config,
  46. is_train = is_train,
  47. load_cache = args.load_cache
  48. )
  49. ## Custom dataset
  50. elif args.dataset == 'ourdataset':
  51. image_set = 'train' if is_train else 'val',
  52. dataset = OurDataset(data_dir = data_dir,
  53. img_size = args.img_size,
  54. image_set = image_set,
  55. transform = transform,
  56. trans_config = trans_config,
  57. s_train = is_train,
  58. oad_cache = args.load_cache
  59. )
  60. return dataset, dataset_info
  61. # ------------------------------ Transform ------------------------------
  62. def build_transform(args, trans_config, max_stride=32, is_train=False):
  63. # Modify trans_config
  64. if is_train:
  65. ## mosaic prob.
  66. if args.mosaic is not None:
  67. trans_config['mosaic_prob']=args.mosaic if is_train else 0.0
  68. else:
  69. trans_config['mosaic_prob']=trans_config['mosaic_prob'] if is_train else 0.0
  70. ## mixup prob.
  71. if args.mixup is not None:
  72. trans_config['mixup_prob']=args.mixup if is_train else 0.0
  73. else:
  74. trans_config['mixup_prob']=trans_config['mixup_prob'] if is_train else 0.0
  75. # Transform
  76. if trans_config['aug_type'] == 'ssd':
  77. if is_train:
  78. transform = SSDAugmentation(img_size=args.img_size,)
  79. else:
  80. transform = SSDBaseTransform(img_size=args.img_size,)
  81. trans_config['mosaic_prob'] = 0.0
  82. trans_config['mixup_prob'] = 0.0
  83. elif trans_config['aug_type'] == 'yolov5':
  84. if is_train:
  85. transform = YOLOv5Augmentation(
  86. img_size=args.img_size,
  87. trans_config=trans_config,
  88. use_ablu=trans_config['use_ablu']
  89. )
  90. else:
  91. transform = YOLOv5BaseTransform(
  92. img_size=args.img_size,
  93. max_stride=max_stride
  94. )
  95. return transform, trans_config