artdet.py 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209
  1. # --------------- Torch components ---------------
  2. import torch
  3. import torch.nn as nn
  4. import torch.nn.functional as F
  5. # --------------- Model components ---------------
  6. from .artdet_backbone import build_backbone
  7. from .artdet_neck import build_neck
  8. from .artdet_pafpn import build_fpn
  9. from .artdet_head import build_head
  10. # --------------- External components ---------------
  11. from utils.misc import multiclass_nms
  12. # Anchor-free Real-Time Detection
  13. class ARTDet(nn.Module):
  14. def __init__(self,
  15. cfg,
  16. device,
  17. num_classes = 20,
  18. conf_thresh = 0.05,
  19. nms_thresh = 0.6,
  20. trainable = False,
  21. topk = 1000,
  22. deploy = False):
  23. super(ARTDet, self).__init__()
  24. # ---------------------- Basic Parameters ----------------------
  25. self.cfg = cfg
  26. self.device = device
  27. self.stride = cfg['stride']
  28. self.reg_max = cfg['reg_max']
  29. self.num_classes = num_classes
  30. self.trainable = trainable
  31. self.conf_thresh = conf_thresh
  32. self.nms_thresh = nms_thresh
  33. self.topk = topk
  34. self.deploy = deploy
  35. # ---------------------- Network Parameters ----------------------
  36. ## ----------- Backbone -----------
  37. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  38. ## ----------- Neck: SPP -----------
  39. self.neck = build_neck(cfg=cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  40. feats_dim[-1] = self.neck.out_dim
  41. ## ----------- Neck: FPN -----------
  42. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=round(256*cfg['width']))
  43. self.head_dim = self.fpn.out_dim
  44. ## ----------- Heads -----------
  45. self.det_heads = nn.ModuleList(
  46. [build_head(cfg, head_dim, head_dim, num_classes)
  47. for head_dim in self.head_dim
  48. ])
  49. # ---------------------- Basic Functions ----------------------
  50. ## generate anchor points
  51. def generate_anchors(self, level, fmp_size):
  52. """
  53. fmp_size: (List) [H, W]
  54. """
  55. # generate grid cells
  56. fmp_h, fmp_w = fmp_size
  57. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  58. # [H, W, 2] -> [HW, 2]
  59. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  60. anchor_xy += 0.5 # add center offset
  61. anchor_xy *= self.stride[level]
  62. anchors = anchor_xy.to(self.device)
  63. return anchors
  64. ## post-process
  65. def post_process(self, cls_preds, box_preds):
  66. """
  67. Input:
  68. cls_preds: List(Tensor) [[H x W, C], ...]
  69. box_preds: List(Tensor) [[H x W, 4], ...]
  70. """
  71. all_scores = []
  72. all_labels = []
  73. all_bboxes = []
  74. for cls_pred_i, box_pred_i in zip(cls_preds, box_preds):
  75. # (H x W x C,)
  76. scores_i = cls_pred_i.sigmoid().flatten()
  77. # Keep top k top scoring indices only.
  78. num_topk = min(self.topk, box_pred_i.size(0))
  79. # torch.sort is actually faster than .topk (at least on GPUs)
  80. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  81. topk_scores = predicted_prob[:num_topk]
  82. topk_idxs = topk_idxs[:num_topk]
  83. # filter out the proposals with low confidence score
  84. keep_idxs = topk_scores > self.conf_thresh
  85. topk_scores = topk_scores[keep_idxs]
  86. topk_idxs = topk_idxs[keep_idxs]
  87. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  88. topk_labels = topk_idxs % self.num_classes
  89. topk_bboxes = box_pred_i[anchor_idxs]
  90. all_scores.append(topk_scores)
  91. all_labels.append(topk_labels)
  92. all_bboxes.append(topk_bboxes)
  93. scores = torch.cat(all_scores)
  94. labels = torch.cat(all_labels)
  95. bboxes = torch.cat(all_bboxes)
  96. # to cpu & numpy
  97. scores = scores.cpu().numpy()
  98. labels = labels.cpu().numpy()
  99. bboxes = bboxes.cpu().numpy()
  100. # nms
  101. scores, labels, bboxes = multiclass_nms(
  102. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  103. return bboxes, scores, labels
  104. # ---------------------- Main Process for Inference ----------------------
  105. @torch.no_grad()
  106. def inference_single_image(self, x):
  107. # ---------------- Backbone ----------------
  108. pyramid_feats = self.backbone(x)
  109. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  110. pyramid_feats = self.fpn(pyramid_feats)
  111. # ---------------- Heads ----------------
  112. all_cls_preds = []
  113. all_box_preds = []
  114. for level, (feat, head) in enumerate(zip(pyramid_feats, self.det_heads)):
  115. # anchors: [M, 2]
  116. fmp_size = feat.shape[-2:]
  117. anchors = self.generate_anchors(level, fmp_size)
  118. # pred
  119. cls_pred, reg_pred, box_pred = head(feat, anchors, self.stride[level])
  120. # collect preds
  121. all_cls_preds.append(cls_pred[0])
  122. all_box_preds.append(box_pred[0])
  123. if self.deploy:
  124. # no post process
  125. cls_preds = torch.cat(all_cls_preds, dim=0)
  126. box_pred = torch.cat(all_box_preds, dim=0)
  127. # [n_anchors_all, 4 + C]
  128. outputs = torch.cat([box_pred, cls_preds.sigmoid()], dim=-1)
  129. return outputs
  130. else:
  131. # post process
  132. bboxes, scores, labels = self.post_process(all_cls_preds, all_box_preds)
  133. return bboxes, scores, labels
  134. # ---------------------- Main Process for Training ----------------------
  135. def forward(self, x):
  136. if not self.trainable:
  137. return self.inference_single_image(x)
  138. else:
  139. # ---------------- Backbone ----------------
  140. pyramid_feats = self.backbone(x)
  141. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  142. pyramid_feats = self.fpn(pyramid_feats)
  143. # ---------------- Heads ----------------
  144. all_anchors = []
  145. all_cls_preds = []
  146. all_reg_preds = []
  147. all_box_preds = []
  148. all_strides = []
  149. for level, (feat, head) in enumerate(zip(pyramid_feats, self.det_heads)):
  150. # anchors: [M, 2]
  151. fmp_size = feat.shape[-2:]
  152. anchors = self.generate_anchors(level, fmp_size)
  153. # stride tensor: [M, 1]
  154. stride_tensor = torch.ones_like(anchors[..., :1]) * self.stride[level]
  155. # pred
  156. cls_pred, reg_pred, box_pred = head(feat, anchors, self.stride[level])
  157. # collect preds
  158. all_cls_preds.append(cls_pred)
  159. all_reg_preds.append(reg_pred)
  160. all_box_preds.append(box_pred)
  161. all_anchors.append(anchors)
  162. all_strides.append(stride_tensor)
  163. # output dict
  164. outputs = {"pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  165. "pred_reg": all_reg_preds, # List(Tensor) [B, M, 4*(reg_max)]
  166. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  167. "anchors": all_anchors, # List(Tensor) [M, 2]
  168. "strides": self.stride, # List(Int) = [8, 16, 32]
  169. "stride_tensor": all_strides # List(Tensor) [M, 1]
  170. }
  171. return outputs