loss.py 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.cfg = cfg
  9. self.args = args
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.use_ema_update = cfg['ema_update']
  15. # ---------------- Loss weight ----------------
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. self.loss_dfl_weight = cfg['loss_dfl_weight']
  19. self.loss_box_aux = cfg['loss_box_aux']
  20. # ---------------- Matcher ----------------
  21. matcher_config = cfg['matcher']
  22. ## SimOTA assigner
  23. self.ota_matcher = AlignedSimOTA(
  24. center_sampling_radius=matcher_config['ota']['center_sampling_radius'],
  25. topk_candidate=matcher_config['ota']['topk_candidate'],
  26. num_classes=num_classes
  27. )
  28. def ema_update(self, name: str, value, initial_value, momentum=0.9):
  29. if hasattr(self, name):
  30. old = getattr(self, name)
  31. else:
  32. old = initial_value
  33. new = old * momentum + value * (1 - momentum)
  34. setattr(self, name, new)
  35. return new
  36. def loss_classes(self, pred_cls, gt_score, gt_label=None, vfl=False):
  37. if vfl:
  38. assert gt_label is not None
  39. # compute varifocal loss
  40. alpha, gamma = 0.75, 2.0
  41. focal_weight = alpha * pred_cls.sigmoid().pow(gamma) * (1 - gt_label) + gt_score * gt_label
  42. bce_loss = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  43. loss_cls = bce_loss * focal_weight
  44. else:
  45. # compute bce loss
  46. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  47. return loss_cls
  48. def loss_bboxes(self, pred_box, gt_box, bbox_weight=None):
  49. # regression loss
  50. ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
  51. loss_box = 1.0 - ious
  52. if bbox_weight is not None:
  53. loss_box *= bbox_weight
  54. return loss_box
  55. def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
  56. # rescale coords by stride
  57. gt_box_s = gt_box / stride
  58. anchor_s = anchor / stride
  59. # compute deltas
  60. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
  61. gt_left = gt_ltrb_s.to(torch.long)
  62. gt_right = gt_left + 1
  63. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  64. weight_right = 1 - weight_left
  65. # loss left
  66. loss_left = F.cross_entropy(
  67. pred_reg.view(-1, self.cfg['reg_max']),
  68. gt_left.view(-1),
  69. reduction='none').view(gt_left.shape) * weight_left
  70. # loss right
  71. loss_right = F.cross_entropy(
  72. pred_reg.view(-1, self.cfg['reg_max']),
  73. gt_right.view(-1),
  74. reduction='none').view(gt_left.shape) * weight_right
  75. loss_dfl = (loss_left + loss_right).mean(-1)
  76. if bbox_weight is not None:
  77. loss_dfl *= bbox_weight
  78. return loss_dfl
  79. def loss_bboxes_aux(self, pred_delta, gt_box, anchors, stride_tensors):
  80. gt_delta_tl = (anchors - gt_box[..., :2]) / stride_tensors
  81. gt_delta_rb = (gt_box[..., 2:] - anchors) / stride_tensors
  82. gt_delta = torch.cat([gt_delta_tl, gt_delta_rb], dim=1)
  83. loss_box_aux = F.l1_loss(pred_delta, gt_delta, reduction='none')
  84. return loss_box_aux
  85. def __call__(self, outputs, targets, epoch=0):
  86. """ Compute loss with SimOTA assigner """
  87. bs = outputs['pred_cls'][0].shape[0]
  88. device = outputs['pred_cls'][0].device
  89. fpn_strides = outputs['strides']
  90. anchors = outputs['anchors']
  91. num_anchors = sum([ab.shape[0] for ab in anchors])
  92. # preds: [B, M, C]
  93. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  94. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  95. box_preds = torch.cat(outputs['pred_box'], dim=1)
  96. # --------------- label assignment ---------------
  97. cls_targets = []
  98. box_targets = []
  99. fg_masks = []
  100. for batch_idx in range(bs):
  101. tgt_labels = targets[batch_idx]["labels"].to(device)
  102. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  103. # check target
  104. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  105. # There is no valid gt
  106. cls_target = cls_preds.new_zeros((num_anchors, self.num_classes))
  107. box_target = cls_preds.new_zeros((0, 4))
  108. fg_mask = cls_preds.new_zeros(num_anchors).bool()
  109. else:
  110. (
  111. fg_mask,
  112. assigned_labels,
  113. assigned_ious,
  114. assigned_indexs
  115. ) = self.ota_matcher(
  116. fpn_strides = fpn_strides,
  117. anchors = anchors,
  118. pred_cls = cls_preds[batch_idx],
  119. pred_box = box_preds[batch_idx],
  120. tgt_labels = tgt_labels,
  121. tgt_bboxes = tgt_bboxes
  122. )
  123. # prepare cls targets
  124. assigned_labels = F.one_hot(assigned_labels.long(), self.num_classes)
  125. assigned_labels = assigned_labels * assigned_ious.unsqueeze(-1)
  126. cls_target = assigned_labels.new_zeros((num_anchors, self.num_classes))
  127. cls_target[fg_mask] = assigned_labels
  128. # prepare box targets
  129. box_target = tgt_bboxes[assigned_indexs]
  130. cls_targets.append(cls_target)
  131. box_targets.append(box_target)
  132. fg_masks.append(fg_mask)
  133. cls_targets = torch.cat(cls_targets, 0)
  134. box_targets = torch.cat(box_targets, 0)
  135. fg_masks = torch.cat(fg_masks, 0)
  136. num_fgs = fg_masks.sum()
  137. # average loss normalizer across all the GPUs
  138. if is_dist_avail_and_initialized():
  139. torch.distributed.all_reduce(num_fgs)
  140. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  141. # update loss normalizer with EMA
  142. if self.use_ema_update:
  143. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  144. else:
  145. normalizer = num_fgs
  146. # ------------------ Classification loss ------------------
  147. cls_preds = cls_preds.view(-1, self.num_classes)
  148. loss_cls = self.loss_classes(cls_preds, cls_targets)
  149. loss_cls = loss_cls.sum() / normalizer
  150. # ------------------ Regression loss ------------------
  151. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  152. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  153. loss_box = loss_box.sum() / normalizer
  154. # ------------------ Distribution focal loss ------------------
  155. ## process anchors
  156. anchors = torch.cat(anchors, dim=0)
  157. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  158. ## process stride tensors
  159. strides = torch.cat(outputs['stride_tensor'], dim=0)
  160. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  161. ## fg preds
  162. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  163. anchors_pos = anchors[fg_masks]
  164. strides_pos = strides[fg_masks]
  165. ## compute dfl
  166. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  167. loss_dfl = loss_dfl.sum() / normalizer
  168. # total loss
  169. losses = self.loss_cls_weight * loss_cls + \
  170. self.loss_box_weight * loss_box + \
  171. self.loss_dfl_weight * loss_dfl
  172. loss_dict = dict(
  173. loss_cls = loss_cls,
  174. loss_box = loss_box,
  175. loss_dfl = loss_dfl,
  176. losses = losses
  177. )
  178. # ------------------ Aux regression loss ------------------
  179. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  180. ## delta_preds
  181. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  182. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  183. ## aux loss
  184. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
  185. loss_box_aux = loss_box_aux.sum() / num_fgs
  186. losses += loss_box_aux
  187. loss_dict['loss_box_aux'] = loss_box_aux
  188. return loss_dict
  189. def build_criterion(args, cfg, device, num_classes):
  190. criterion = Criterion(
  191. args=args,
  192. cfg=cfg,
  193. device=device,
  194. num_classes=num_classes
  195. )
  196. return criterion
  197. if __name__ == "__main__":
  198. pass