fpn.py 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from typing import List
  5. try:
  6. from .basic import get_clones, BasicConv, RTCBlock, TransformerLayer
  7. except:
  8. from basic import get_clones, BasicConv, RTCBlock, TransformerLayer
  9. # Build PaFPN
  10. def build_fpn(cfg, in_dims, out_dim):
  11. if cfg['fpn'] == 'hybrid_encoder':
  12. return HybridEncoder(in_dims = in_dims,
  13. out_dim = out_dim,
  14. width = cfg['width'],
  15. depth = cfg['depth'],
  16. act_type = cfg['fpn_act'],
  17. norm_type = cfg['fpn_norm'],
  18. depthwise = cfg['fpn_depthwise'],
  19. num_heads = cfg['en_num_heads'],
  20. num_layers = cfg['en_num_layers'],
  21. mlp_ratio = cfg['en_mlp_ratio'],
  22. dropout = cfg['en_dropout'],
  23. pe_temperature = cfg['pe_temperature'],
  24. en_act_type = cfg['en_act'],
  25. )
  26. else:
  27. raise NotImplementedError("Unknown PaFPN: <{}>".format(cfg['fpn']))
  28. # ----------------- Feature Pyramid Network -----------------
  29. ## Real-time Convolutional PaFPN
  30. class HybridEncoder(nn.Module):
  31. def __init__(self,
  32. in_dims :List = [256, 512, 512],
  33. out_dim :int = 256,
  34. width :float = 1.0,
  35. depth :float = 1.0,
  36. act_type :str = 'silu',
  37. norm_type :str = 'BN',
  38. depthwise :bool = False,
  39. # Transformer's parameters
  40. num_heads :int = 8,
  41. num_layers :int = 1,
  42. mlp_ratio :float = 4.0,
  43. dropout :float = 0.1,
  44. pe_temperature :float = 10000.,
  45. en_act_type :str = 'gelu'
  46. ) -> None:
  47. super(HybridEncoder, self).__init__()
  48. print('==============================')
  49. print('FPN: {}'.format("RTC-PaFPN"))
  50. # ---------------- Basic parameters ----------------
  51. self.in_dims = in_dims
  52. self.out_dim = round(out_dim * width)
  53. self.width = width
  54. self.depth = depth
  55. self.num_heads = num_heads
  56. self.num_layers = num_layers
  57. self.mlp_ratio = mlp_ratio
  58. self.pe_temperature = pe_temperature
  59. self.pos_embed = None
  60. c3, c4, c5 = in_dims
  61. # ---------------- Input projs ----------------
  62. self.reduce_layer_1 = BasicConv(c5, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  63. self.reduce_layer_2 = BasicConv(c4, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  64. self.reduce_layer_3 = BasicConv(c3, self.out_dim, kernel_size=1, act_type=act_type, norm_type=norm_type)
  65. # ---------------- Downsample ----------------
  66. self.dowmsample_layer_1 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  67. self.dowmsample_layer_2 = BasicConv(self.out_dim, self.out_dim, kernel_size=3, padding=1, stride=2, act_type=act_type, norm_type=norm_type)
  68. # ---------------- Transformer Encoder ----------------
  69. self.transformer_encoder = get_clones(
  70. TransformerLayer(self.out_dim, num_heads, mlp_ratio, dropout, en_act_type), num_layers)
  71. # ---------------- Top dwon FPN ----------------
  72. ## P5 -> P4
  73. self.top_down_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
  74. out_dim = self.out_dim,
  75. num_blocks = round(3*depth),
  76. shortcut = False,
  77. act_type = act_type,
  78. norm_type = norm_type,
  79. depthwise = depthwise,
  80. )
  81. ## P4 -> P3
  82. self.top_down_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
  83. out_dim = self.out_dim,
  84. num_blocks = round(3*depth),
  85. shortcut = False,
  86. act_type = act_type,
  87. norm_type = norm_type,
  88. depthwise = depthwise,
  89. )
  90. # ---------------- Bottom up PAN----------------
  91. ## P3 -> P4
  92. self.bottom_up_layer_1 = RTCBlock(in_dim = self.out_dim * 2,
  93. out_dim = self.out_dim,
  94. num_blocks = round(3*depth),
  95. shortcut = False,
  96. act_type = act_type,
  97. norm_type = norm_type,
  98. depthwise = depthwise,
  99. )
  100. ## P4 -> P5
  101. self.bottom_up_layer_2 = RTCBlock(in_dim = self.out_dim * 2,
  102. out_dim = self.out_dim,
  103. num_blocks = round(3*depth),
  104. shortcut = False,
  105. act_type = act_type,
  106. norm_type = norm_type,
  107. depthwise = depthwise,
  108. )
  109. self.init_weights()
  110. def init_weights(self):
  111. """Initialize the parameters."""
  112. for m in self.modules():
  113. if isinstance(m, torch.nn.Conv2d):
  114. # In order to be consistent with the source code,
  115. # reset the Conv2d initialization parameters
  116. m.reset_parameters()
  117. def build_2d_sincos_position_embedding(self, w, h, embed_dim=256, temperature=10000.):
  118. assert embed_dim % 4 == 0, \
  119. 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
  120. # ----------- Check cahed pos_embed -----------
  121. if self.pos_embed is not None and \
  122. self.pos_embed.shape[2:] == [h, w]:
  123. return self.pos_embed
  124. # ----------- Generate grid coords -----------
  125. grid_w = torch.arange(int(w), dtype=torch.float32)
  126. grid_h = torch.arange(int(h), dtype=torch.float32)
  127. grid_w, grid_h = torch.meshgrid([grid_w, grid_h]) # shape: [H, W]
  128. pos_dim = embed_dim // 4
  129. omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
  130. omega = 1. / (temperature**omega)
  131. out_w = grid_w.flatten()[..., None] @ omega[None] # shape: [N, C]
  132. out_h = grid_h.flatten()[..., None] @ omega[None] # shape: [N, C]
  133. # shape: [1, N, C]
  134. pos_embed = torch.concat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h),torch.cos(out_h)], axis=1)[None, :, :]
  135. self.pos_embed = pos_embed
  136. return pos_embed
  137. def forward(self, features):
  138. c3, c4, c5 = features
  139. # -------- Input projs --------
  140. p5 = self.reduce_layer_1(c5)
  141. p4 = self.reduce_layer_2(c4)
  142. p3 = self.reduce_layer_3(c3)
  143. # -------- Transformer encoder --------
  144. if self.transformer_encoder is not None:
  145. for encoder in self.transformer_encoder:
  146. channels, fmp_h, fmp_w = p5.shape[1:]
  147. # [B, C, H, W] -> [B, N, C], N=HxW
  148. src_flatten = p5.flatten(2).permute(0, 2, 1)
  149. pos_embed = self.build_2d_sincos_position_embedding(
  150. fmp_w, fmp_h, channels, self.pe_temperature)
  151. memory = encoder(src_flatten, pos_embed=pos_embed)
  152. # [B, N, C] -> [B, C, N] -> [B, C, H, W]
  153. p5 = memory.permute(0, 2, 1).reshape([-1, channels, fmp_h, fmp_w])
  154. # -------- Top down FPN --------
  155. p5_up = F.interpolate(p5, scale_factor=2.0)
  156. p4 = self.top_down_layer_1(torch.cat([p4, p5_up], dim=1))
  157. p4_up = F.interpolate(p4, scale_factor=2.0)
  158. p3 = self.top_down_layer_2(torch.cat([p3, p4_up], dim=1))
  159. # -------- Bottom up PAN --------
  160. p3_ds = self.dowmsample_layer_1(p3)
  161. p4 = self.bottom_up_layer_1(torch.cat([p4, p3_ds], dim=1))
  162. p4_ds = self.dowmsample_layer_2(p4)
  163. p5 = self.bottom_up_layer_2(torch.cat([p5, p4_ds], dim=1))
  164. out_feats = [p3, p4, p5]
  165. return out_feats
  166. if __name__ == '__main__':
  167. import time
  168. from thop import profile
  169. cfg = {
  170. 'width': 1.0,
  171. 'depth': 1.0,
  172. 'fpn': 'hybrid_encoder',
  173. 'fpn_act': 'silu',
  174. 'fpn_norm': 'BN',
  175. 'fpn_depthwise': False,
  176. 'en_num_heads': 8,
  177. 'en_num_layers': 1,
  178. 'en_mlp_ratio': 4.0,
  179. 'en_dropout': 0.1,
  180. 'pe_temperature': 10000.,
  181. 'en_act': 'gelu',
  182. }
  183. fpn_dims = [256, 512, 1024]
  184. out_dim = 256
  185. pyramid_feats = [torch.randn(1, fpn_dims[0], 80, 80), torch.randn(1, fpn_dims[1], 40, 40), torch.randn(1, fpn_dims[2], 20, 20)]
  186. model = build_fpn(cfg, fpn_dims, out_dim)
  187. t0 = time.time()
  188. outputs = model(pyramid_feats)
  189. t1 = time.time()
  190. print('Time: ', t1 - t0)
  191. for out in outputs:
  192. print(out.shape)
  193. print('==============================')
  194. flops, params = profile(model, inputs=(pyramid_feats, ), verbose=False)
  195. print('==============================')
  196. print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
  197. print('Params : {:.2f} M'.format(params / 1e6))