rtmdet_v1_pafpn.py 3.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from .rtmdet_v1_basic import (Conv, build_reduce_layer, build_downsample_layer, build_fpn_block)
  5. # RTMDet-Style PaFPN
  6. class RTMDetPaFPN(nn.Module):
  7. def __init__(self, cfg, in_dims=[512, 1024, 1024], out_dim=None, input_proj=False):
  8. super(RTMDetPaFPN, self).__init__()
  9. # --------------------------- Basic Parameters ---------------------------
  10. self.in_dims = in_dims
  11. if input_proj:
  12. self.fpn_dims = [round(256*cfg['width']), round(512*cfg['width']), round(1024*cfg['width'])]
  13. else:
  14. self.fpn_dims = in_dims
  15. # --------------------------- Input proj ---------------------------
  16. self.input_projs = nn.ModuleList([nn.Conv2d(in_dim, fpn_dim, kernel_size=1)
  17. for in_dim, fpn_dim in zip(in_dims, self.fpn_dims)])
  18. # --------------------------- Top-down FPN---------------------------
  19. ## P5 -> P4
  20. self.reduce_layer_1 = build_reduce_layer(cfg, self.fpn_dims[2], self.fpn_dims[2]//2)
  21. self.top_down_layer_1 = build_fpn_block(cfg, self.fpn_dims[1] + self.fpn_dims[2]//2, self.fpn_dims[1])
  22. ## P4 -> P3
  23. self.reduce_layer_2 = build_reduce_layer(cfg, self.fpn_dims[1], self.fpn_dims[1]//2)
  24. self.top_down_layer_2 = build_fpn_block(cfg, self.fpn_dims[0] + self.fpn_dims[1]//2, self.fpn_dims[0])
  25. # --------------------------- Bottom-up FPN ---------------------------
  26. ## P3 -> P4
  27. self.downsample_layer_1 = build_downsample_layer(cfg, self.fpn_dims[0], self.fpn_dims[0])
  28. self.bottom_up_layer_1 = build_fpn_block(cfg, self.fpn_dims[0] + self.fpn_dims[1]//2, self.fpn_dims[1])
  29. ## P4 -> P5
  30. self.downsample_layer_2 = build_downsample_layer(cfg, self.fpn_dims[1], self.fpn_dims[1])
  31. self.bottom_up_layer_2 = build_fpn_block(cfg, self.fpn_dims[1] + self.fpn_dims[2]//2, self.fpn_dims[2])
  32. # --------------------------- Output proj ---------------------------
  33. if out_dim is not None:
  34. self.out_layers = nn.ModuleList([
  35. Conv(in_dim, out_dim, k=1,
  36. act_type=cfg['fpn_act'], norm_type=cfg['fpn_norm'])
  37. for in_dim in self.fpn_dims
  38. ])
  39. self.out_dim = [out_dim] * 3
  40. else:
  41. self.out_layers = None
  42. self.out_dim = self.fpn_dims
  43. def forward(self, features):
  44. fpn_feats = [layer(feat) for feat, layer in zip(features, self.input_projs)]
  45. c3, c4, c5 = fpn_feats
  46. # Top down
  47. ## P5 -> P4
  48. c6 = self.reduce_layer_1(c5)
  49. c7 = F.interpolate(c6, scale_factor=2.0)
  50. c8 = torch.cat([c7, c4], dim=1)
  51. c9 = self.top_down_layer_1(c8)
  52. ## P4 -> P3
  53. c10 = self.reduce_layer_2(c9)
  54. c11 = F.interpolate(c10, scale_factor=2.0)
  55. c12 = torch.cat([c11, c3], dim=1)
  56. c13 = self.top_down_layer_2(c12)
  57. # Bottom up
  58. ## p3 -> P4
  59. c14 = self.downsample_layer_1(c13)
  60. c15 = torch.cat([c14, c10], dim=1)
  61. c16 = self.bottom_up_layer_1(c15)
  62. ## P4 -> P5
  63. c17 = self.downsample_layer_2(c16)
  64. c18 = torch.cat([c17, c6], dim=1)
  65. c19 = self.bottom_up_layer_2(c18)
  66. out_feats = [c13, c16, c19] # [P3, P4, P5]
  67. # output proj layers
  68. if self.out_layers is not None:
  69. out_feats_proj = []
  70. for feat, layer in zip(out_feats, self.out_layers):
  71. out_feats_proj.append(layer(feat))
  72. return out_feats_proj
  73. return out_feats
  74. def build_fpn(cfg, in_dims, out_dim=None, input_proj=False):
  75. model = cfg['fpn']
  76. # build pafpn
  77. if model == 'rtmdet_pafpn':
  78. fpn_net = RTMDetPaFPN(cfg, in_dims, out_dim, input_proj)
  79. return fpn_net