loss.py 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import AlignedSimOTA
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.args = args
  9. self.cfg = cfg
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.aux_bbox_loss = False
  15. # --------------- Loss config ---------------
  16. self.loss_cls_weight = cfg['loss_cls_weight']
  17. self.loss_box_weight = cfg['loss_box_weight']
  18. # --------------- Matcher config ---------------
  19. self.matcher_hpy = cfg['matcher_hpy']['main']
  20. self.matcher = AlignedSimOTA(soft_center_radius = self.matcher_hpy['soft_center_radius'],
  21. topk_candidates = self.matcher_hpy['topk_candidates'],
  22. num_classes = num_classes,
  23. )
  24. # --------------- Aux Matcher config ---------------
  25. self.aux_matcher_hpy = cfg['matcher_hpy']['aux']
  26. self.aux_matcher = AlignedSimOTA(soft_center_radius = self.aux_matcher_hpy['soft_center_radius'],
  27. topk_candidates = self.aux_matcher_hpy['topk_candidates'],
  28. num_classes = num_classes,
  29. )
  30. # -------------------- Basic loss functions --------------------
  31. def loss_classes(self, pred_cls, target, beta=2.0):
  32. # Quality FocalLoss
  33. """
  34. pred_cls: (torch.Tensor): [N, C]。
  35. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N)
  36. """
  37. label, score = target
  38. pred_sigmoid = pred_cls.sigmoid()
  39. scale_factor = pred_sigmoid
  40. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  41. ce_loss = F.binary_cross_entropy_with_logits(
  42. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  43. bg_class_ind = pred_cls.shape[-1]
  44. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  45. pos_label = label[pos].long()
  46. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  47. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  48. pred_cls[pos, pos_label], score[pos],
  49. reduction='none') * scale_factor.abs().pow(beta)
  50. return ce_loss
  51. def loss_bboxes(self, pred_box, gt_box):
  52. ious = get_ious(pred_box, gt_box, box_mode="xyxy", iou_type='giou')
  53. loss_box = 1.0 - ious
  54. return loss_box
  55. def loss_bboxes_aux(self, pred_reg, gt_box, anchors, stride_tensors):
  56. # xyxy -> cxcy&bwbh
  57. gt_cxcy = (gt_box[..., :2] + gt_box[..., 2:]) * 0.5
  58. gt_bwbh = gt_box[..., 2:] - gt_box[..., :2]
  59. # encode gt box
  60. gt_cxcy_encode = (gt_cxcy - anchors) / stride_tensors
  61. gt_bwbh_encode = torch.log(gt_bwbh / stride_tensors)
  62. gt_box_encode = torch.cat([gt_cxcy_encode, gt_bwbh_encode], dim=-1)
  63. # l1 loss
  64. loss_box_aux = F.l1_loss(pred_reg, gt_box_encode, reduction='none')
  65. return loss_box_aux
  66. # -------------------- Task loss functions --------------------
  67. def compute_loss(self, outputs, targets, aux_loss=False, epoch=0):
  68. """
  69. Input:
  70. outputs: (Dict) -> {
  71. 'pred_cls': (List[torch.Tensor] -> [B, M, Nc]),
  72. 'pred_reg': (List[torch.Tensor] -> [B, M, 4]),
  73. 'pred_box': (List[torch.Tensor] -> [B, M, 4]),
  74. 'strides': (List[Int])
  75. }
  76. target: (List[Dict]) [
  77. {'boxes': (torch.Tensor) -> [N, 4],
  78. 'labels': (torch.Tensor) -> [N,],
  79. ...}, ...
  80. ]
  81. Output:
  82. loss_dict: (Dict) -> {
  83. 'loss_cls': (torch.Tensor) It is a scalar.),
  84. 'loss_box': (torch.Tensor) It is a scalar.),
  85. 'loss_box_aux': (torch.Tensor) It is a scalar.),
  86. 'losses': (torch.Tensor) It is a scalar.),
  87. }
  88. """
  89. bs = outputs['pred_cls'].shape[0]
  90. device = outputs['pred_cls'].device
  91. stride = outputs['stride']
  92. anchors = outputs['anchors']
  93. # preds: [B, M, C]
  94. cls_preds = outputs['pred_cls']
  95. box_preds = outputs['pred_box']
  96. # --------------- label assignment ---------------
  97. cls_targets = []
  98. box_targets = []
  99. assign_metrics = []
  100. for batch_idx in range(bs):
  101. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  102. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  103. if not aux_loss:
  104. assigned_result = self.matcher(stride=stride,
  105. anchors=anchors,
  106. pred_cls=cls_preds[batch_idx].detach(),
  107. pred_box=box_preds[batch_idx].detach(),
  108. gt_labels=tgt_labels,
  109. gt_bboxes=tgt_bboxes
  110. )
  111. else:
  112. assigned_result = self.aux_matcher(stride=stride,
  113. anchors=anchors,
  114. pred_cls=cls_preds[batch_idx].detach(),
  115. pred_box=box_preds[batch_idx].detach(),
  116. gt_labels=tgt_labels,
  117. gt_bboxes=tgt_bboxes
  118. )
  119. cls_targets.append(assigned_result['assigned_labels'])
  120. box_targets.append(assigned_result['assigned_bboxes'])
  121. assign_metrics.append(assigned_result['assign_metrics'])
  122. # List[B, M, C] -> Tensor[BM, C]
  123. cls_targets = torch.cat(cls_targets, dim=0)
  124. box_targets = torch.cat(box_targets, dim=0)
  125. assign_metrics = torch.cat(assign_metrics, dim=0)
  126. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  127. bg_class_ind = self.num_classes
  128. pos_inds = ((cls_targets >= 0) & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  129. num_fgs = assign_metrics.sum()
  130. if is_dist_avail_and_initialized():
  131. torch.distributed.all_reduce(num_fgs)
  132. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  133. # ------------------ Classification loss ------------------
  134. cls_preds = cls_preds.view(-1, self.num_classes)
  135. loss_cls = self.loss_classes(cls_preds, (cls_targets, assign_metrics))
  136. loss_cls = loss_cls.sum() / num_fgs
  137. # ------------------ Regression loss ------------------
  138. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  139. box_targets_pos = box_targets[pos_inds]
  140. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  141. loss_box = loss_box.sum() / num_fgs
  142. # total loss
  143. losses = self.loss_cls_weight * loss_cls + \
  144. self.loss_box_weight * loss_box
  145. # ------------------ Aux regression loss ------------------
  146. loss_box_aux = None
  147. if epoch >= (self.max_epoch - self.no_aug_epoch - 1):
  148. ## reg_preds
  149. reg_preds = outputs['pred_reg']
  150. reg_preds_pos = reg_preds.view(-1, 4)[pos_inds]
  151. ## anchor tensors
  152. anchors_tensors = outputs['anchors'][None].repeat(bs, 1, 1)
  153. anchors_tensors_pos = anchors_tensors.view(-1, 2)[pos_inds]
  154. ## stride tensors
  155. stride_tensors = outputs['stride_tensors'][None].repeat(bs, 1, 1)
  156. stride_tensors_pos = stride_tensors.view(-1, 1)[pos_inds]
  157. ## aux loss
  158. loss_box_aux = self.loss_bboxes_aux(reg_preds_pos, box_targets_pos, anchors_tensors_pos, stride_tensors_pos)
  159. loss_box_aux = loss_box_aux.sum() / num_fgs
  160. losses += loss_box_aux
  161. # Loss dict
  162. if loss_box_aux is None:
  163. loss_dict = dict(
  164. loss_cls = loss_cls,
  165. loss_box = loss_box,
  166. losses = losses
  167. )
  168. else:
  169. loss_dict = dict(
  170. loss_cls = loss_cls,
  171. loss_box = loss_box,
  172. loss_box_aux = loss_box_aux,
  173. losses = losses
  174. )
  175. return loss_dict
  176. def __call__(self, outputs, targets, epoch=0):
  177. # -------------- Main loss --------------
  178. main_loss_dict = self.compute_loss(outputs, targets, epoch)
  179. # -------------- Aux loss --------------
  180. aux_loss_dict = self.compute_loss(outputs['aux_outputs'], targets, epoch)
  181. # Reformat loss dict
  182. loss_dict = dict()
  183. loss_dict['losses'] = main_loss_dict['losses'] + aux_loss_dict['losses']
  184. for k in main_loss_dict:
  185. if k != 'losses':
  186. loss_dict[k] = main_loss_dict[k]
  187. for k in aux_loss_dict:
  188. if k != 'losses':
  189. loss_dict[k+'_aux'] = aux_loss_dict[k]
  190. return loss_dict
  191. def build_criterion(args, cfg, device, num_classes):
  192. criterion = Criterion(args, cfg, device, num_classes)
  193. return criterion
  194. if __name__ == "__main__":
  195. pass