README.md 1.5 KB

YOLOX:

  • For training, we train YOLOX series with 300 epochs on COCO.
  • For data augmentation, we use the large scale jitter (LSJ), Mosaic augmentation and Mixup augmentation.
  • For optimizer, we use SGD with weight decay 0.0005 and base per image lr 0.01 / 64,.
  • For learning rate scheduler, we use Cosine decay scheduler.
  • The reason for the low performance of my reproduced YOLOX-L has not been found out yet.
Model Backbone Batch Scale APval
0.5:0.95
APval
0.5
FLOPs
(G)
Params
(M)
Weight
YOLOX-S CSPDarkNet-S 8xb8 640 40.1 60.3 26.8 8.9 ckpt
YOLOX-M CSPDarkNet-M 8xb8 640 46.2 66.0 74.3 25.4 ckpt
YOLOX-L CSPDarkNet-L 8xb8 640 48.7 68.0 155.4 54.2 ckpt
YOLOX-X CSPDarkNet-X 8xb8 640