test.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
  1. import argparse
  2. import cv2
  3. import os
  4. import time
  5. import numpy as np
  6. from copy import deepcopy
  7. import torch
  8. # load transform
  9. from dataset.data_augment import build_transform
  10. # load some utils
  11. from utils.misc import build_dataset, load_weight
  12. from utils.misc import compute_flops
  13. from utils.box_ops import rescale_bboxes
  14. from models.detectors import build_model
  15. from config import build_model_config, build_trans_config
  16. def parse_args():
  17. parser = argparse.ArgumentParser(description='YOLO-Tutorial')
  18. # basic
  19. parser.add_argument('-size', '--img_size', default=640, type=int,
  20. help='the max size of input image')
  21. parser.add_argument('--show', action='store_true', default=False,
  22. help='show the visulization results.')
  23. parser.add_argument('--save', action='store_true', default=False,
  24. help='save the visulization results.')
  25. parser.add_argument('--cuda', action='store_true', default=False,
  26. help='use cuda.')
  27. parser.add_argument('--save_folder', default='det_results/', type=str,
  28. help='Dir to save results')
  29. parser.add_argument('-vt', '--visual_threshold', default=0.4, type=float,
  30. help='Final confidence threshold')
  31. parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
  32. help='resize window of cv2 for visualization.')
  33. # model
  34. parser.add_argument('-m', '--model', default='yolov1', type=str,
  35. help='build yolo')
  36. parser.add_argument('--weight', default=None,
  37. type=str, help='Trained state_dict file path to open')
  38. parser.add_argument('-ct', '--conf_thresh', default=0.1, type=float,
  39. help='confidence threshold')
  40. parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
  41. help='NMS threshold')
  42. parser.add_argument('--topk', default=100, type=int,
  43. help='topk candidates for testing')
  44. parser.add_argument("--no_decode", action="store_true", default=False,
  45. help="not decode in inference or yes")
  46. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  47. help='fuse Conv & BN')
  48. # dataset
  49. parser.add_argument('--root', default='/mnt/share/ssd2/dataset',
  50. help='data root')
  51. parser.add_argument('-d', '--dataset', default='coco',
  52. help='coco, voc.')
  53. parser.add_argument('--min_box_size', default=8.0, type=float,
  54. help='min size of target bounding box.')
  55. parser.add_argument('--mosaic', default=None, type=float,
  56. help='mosaic augmentation.')
  57. parser.add_argument('--mixup', default=None, type=float,
  58. help='mixup augmentation.')
  59. return parser.parse_args()
  60. def plot_bbox_labels(img, bbox, label=None, cls_color=None, text_scale=0.4):
  61. x1, y1, x2, y2 = bbox
  62. x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
  63. t_size = cv2.getTextSize(label, 0, fontScale=1, thickness=2)[0]
  64. # plot bbox
  65. cv2.rectangle(img, (x1, y1), (x2, y2), cls_color, 2)
  66. if label is not None:
  67. # plot title bbox
  68. cv2.rectangle(img, (x1, y1-t_size[1]), (int(x1 + t_size[0] * text_scale), y1), cls_color, -1)
  69. # put the test on the title bbox
  70. cv2.putText(img, label, (int(x1), int(y1 - 5)), 0, text_scale, (0, 0, 0), 1, lineType=cv2.LINE_AA)
  71. return img
  72. def visualize(img,
  73. bboxes,
  74. scores,
  75. labels,
  76. vis_thresh,
  77. class_colors,
  78. class_names,
  79. class_indexs=None,
  80. dataset_name='voc'):
  81. ts = 0.4
  82. for i, bbox in enumerate(bboxes):
  83. if scores[i] > vis_thresh:
  84. cls_id = int(labels[i])
  85. if dataset_name == 'coco':
  86. cls_color = class_colors[cls_id]
  87. cls_id = class_indexs[cls_id]
  88. else:
  89. cls_color = class_colors[cls_id]
  90. mess = '%s: %.2f' % (class_names[cls_id], scores[i])
  91. img = plot_bbox_labels(img, bbox, mess, cls_color, text_scale=ts)
  92. return img
  93. @torch.no_grad()
  94. def test(args,
  95. model,
  96. device,
  97. dataset,
  98. transform=None,
  99. class_colors=None,
  100. class_names=None,
  101. class_indexs=None):
  102. num_images = len(dataset)
  103. save_path = os.path.join('det_results/', args.dataset, args.model)
  104. os.makedirs(save_path, exist_ok=True)
  105. for index in range(num_images):
  106. print('Testing image {:d}/{:d}....'.format(index+1, num_images))
  107. image, _ = dataset.pull_image(index)
  108. orig_h, orig_w, _ = image.shape
  109. # prepare
  110. x, _, deltas = transform(image)
  111. x = x.unsqueeze(0).to(device) / 255.
  112. t0 = time.time()
  113. # inference
  114. bboxes, scores, labels = model(x)
  115. print("detection time used ", time.time() - t0, "s")
  116. # rescale bboxes
  117. origin_img_size = [orig_h, orig_w]
  118. cur_img_size = [*x.shape[-2:]]
  119. bboxes = rescale_bboxes(bboxes, origin_img_size, cur_img_size, deltas)
  120. # vis detection
  121. img_processed = visualize(
  122. img=image,
  123. bboxes=bboxes,
  124. scores=scores,
  125. labels=labels,
  126. vis_thresh=args.visual_threshold,
  127. class_colors=class_colors,
  128. class_names=class_names,
  129. class_indexs=class_indexs,
  130. dataset_name=args.dataset)
  131. if args.show:
  132. h, w = img_processed.shape[:2]
  133. sw, sh = int(w*args.window_scale), int(h*args.window_scale)
  134. cv2.namedWindow('detection', 0)
  135. cv2.resizeWindow('detection', sw, sh)
  136. cv2.imshow('detection', img_processed)
  137. cv2.waitKey(0)
  138. if args.save:
  139. # save result
  140. cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
  141. if __name__ == '__main__':
  142. args = parse_args()
  143. # cuda
  144. if args.cuda:
  145. print('use cuda')
  146. device = torch.device("cuda")
  147. else:
  148. device = torch.device("cpu")
  149. # config
  150. model_cfg = build_model_config(args)
  151. trans_cfg = build_trans_config(model_cfg['trans_type'])
  152. # dataset and evaluator
  153. dataset, dataset_info, evaluator = build_dataset(args, trans_cfg, device, is_train=False)
  154. num_classes, class_names, class_indexs = dataset_info
  155. np.random.seed(0)
  156. class_colors = [(np.random.randint(255),
  157. np.random.randint(255),
  158. np.random.randint(255)) for _ in range(num_classes)]
  159. # build model
  160. model = build_model(args, model_cfg, device, num_classes, False)
  161. # load trained weight
  162. model = load_weight(model, args.weight, args.fuse_conv_bn)
  163. model.to(device).eval()
  164. # compute FLOPs and Params
  165. model_copy = deepcopy(model)
  166. model_copy.trainable = False
  167. model_copy.eval()
  168. compute_flops(
  169. model=model_copy,
  170. img_size=args.img_size,
  171. device=device)
  172. del model_copy
  173. # transform
  174. transform = build_transform(args.img_size, trans_cfg, is_train=False)
  175. print("================= DETECT =================")
  176. # run
  177. test(args=args,
  178. model=model,
  179. device=device,
  180. dataset=dataset,
  181. transform=transform,
  182. class_colors=class_colors,
  183. class_names=class_names,
  184. class_indexs=class_indexs
  185. )