| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- import os
- import cv2
- import random
- import numpy as np
- import time
- from torch.utils.data import Dataset
- try:
- from pycocotools.coco import COCO
- except:
- print("It seems that the COCOAPI is not installed.")
- try:
- from .data_augment import build_transform
- from .data_augment.yolov5_augment import yolov5_mosaic_augment, yolov5_mixup_augment, yolox_mixup_augment
- except:
- from data_augment import build_transform
- from data_augment.yolov5_augment import yolov5_mosaic_augment, yolov5_mixup_augment, yolox_mixup_augment
- # please define our class labels
- our_class_labels = ('cat',)
- class OurDataset(Dataset):
- """
- Our dataset class.
- """
- def __init__(self,
- img_size=640,
- data_dir=None,
- image_set='train',
- transform=None,
- trans_config=None,
- is_train=False):
- """
- COCO dataset initialization. Annotation data are read into memory by COCO API.
- Args:
- data_dir (str): dataset root directory
- json_file (str): COCO json file name
- name (str): COCO data name (e.g. 'train2017' or 'val2017')
- debug (bool): if True, only one data id is selected from the dataset
- """
- self.img_size = img_size
- self.image_set = image_set
- self.json_file = '{}.json'.format(image_set)
- self.data_dir = data_dir
- self.coco = COCO(os.path.join(self.data_dir, image_set, 'annotations', self.json_file))
- self.ids = self.coco.getImgIds()
- self.class_ids = sorted(self.coco.getCatIds())
- self.is_train = is_train
- # augmentation
- self.transform = transform
- self.mosaic_prob = trans_config['mosaic_prob'] if trans_config else 0.0
- self.mixup_prob = trans_config['mixup_prob'] if trans_config else 0.0
- self.trans_config = trans_config
- print('==============================')
- print('use Mosaic Augmentation: {}'.format(self.mosaic_prob))
- print('use Mixup Augmentation: {}'.format(self.mixup_prob))
- print('==============================')
- def __len__(self):
- return len(self.ids)
- def __getitem__(self, index):
- return self.pull_item(index)
- def load_image_target(self, index):
- # load an image
- image, _ = self.pull_image(index)
- height, width, channels = image.shape
- # load a target
- bboxes, labels = self.pull_anno(index)
- target = {
- "boxes": bboxes,
- "labels": labels,
- "orig_size": [height, width]
- }
- return image, target
- def load_mosaic(self, index):
- # load 4x mosaic image
- index_list = np.arange(index).tolist() + np.arange(index+1, len(self.ids)).tolist()
- id1 = index
- id2, id3, id4 = random.sample(index_list, 3)
- indexs = [id1, id2, id3, id4]
- # load images and targets
- image_list = []
- target_list = []
- for index in indexs:
- img_i, target_i = self.load_image_target(index)
- image_list.append(img_i)
- target_list.append(target_i)
- # Mosaic Augment
- if self.trans_config['mosaic_type'] == 'yolov5_mosaic':
- image, target = yolov5_mosaic_augment(
- image_list, target_list, self.img_size, self.trans_config)
-
- return image, target
-
- def load_mixup(self, origin_image, origin_target):
- # YOLOv5 type Mixup
- if self.trans_config['mixup_type'] == 'yolov5_mixup':
- new_index = np.random.randint(0, len(self.ids))
- new_image, new_target = self.load_mosaic(new_index)
- image, target = yolov5_mixup_augment(
- origin_image, origin_target, new_image, new_target)
- # YOLOX type Mixup
- elif self.trans_config['mixup_type'] == 'yolox_mixup':
- new_index = np.random.randint(0, len(self.ids))
- new_image, new_target = self.load_image_target(new_index)
- image, target = yolox_mixup_augment(
- origin_image, origin_target, new_image, new_target, self.img_size, self.trans_config['mixup_scale'])
- return image, target
-
- def pull_item(self, index):
- if random.random() < self.mosaic_prob:
- # load a mosaic image
- mosaic = True
- image, target = self.load_mosaic(index)
- else:
- mosaic = False
- # load an image and target
- image, target = self.load_image_target(index)
- # MixUp
- if random.random() < self.mixup_prob:
- image, target = self.load_mixup(image, target)
- # augment
- image, target, deltas = self.transform(image, target, mosaic)
- return image, target, deltas
- def pull_image(self, index):
- id_ = self.ids[index]
- im_ann = self.coco.loadImgs(id_)[0]
- img_file = os.path.join(
- self.data_dir, self.image_set, 'images', im_ann["file_name"])
- image = cv2.imread(img_file)
- return image, id_
- def pull_anno(self, index):
- id_ = self.ids[index]
- anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=None)
- annotations = self.coco.loadAnns(anno_ids)
-
- #load a target
- bboxes = []
- labels = []
- for anno in annotations:
- if 'bbox' in anno and anno['area'] > 0:
- # bbox
- x1 = np.max((0, anno['bbox'][0]))
- y1 = np.max((0, anno['bbox'][1]))
- x2 = x1 + anno['bbox'][2]
- y2 = y1 + anno['bbox'][3]
- if x2 < x1 or y2 < y1:
- continue
- # class label
- cls_id = self.class_ids.index(anno['category_id'])
-
- bboxes.append([x1, y1, x2, y2])
- labels.append(cls_id)
- # guard against no boxes via resizing
- bboxes = np.array(bboxes).reshape(-1, 4)
- labels = np.array(labels).reshape(-1)
-
- return bboxes, labels
- if __name__ == "__main__":
- import argparse
- import sys
- from data_augment import build_transform
- sys.path.append('.')
-
- parser = argparse.ArgumentParser(description='Our-Dataset')
- # opt
- parser.add_argument('--root', default='OurDataset',
- help='data root')
- parser.add_argument('--split', default='train',
- help='data split')
- args = parser.parse_args()
-
- is_train = False
- img_size = 640
- yolov5_trans_config = {
- 'aug_type': 'yolov5',
- # Basic Augment
- 'degrees': 0.0,
- 'translate': 0.2,
- 'scale': 0.9,
- 'shear': 0.0,
- 'perspective': 0.0,
- 'hsv_h': 0.015,
- 'hsv_s': 0.7,
- 'hsv_v': 0.4,
- # Mosaic & Mixup
- 'mosaic_prob': 1.0,
- 'mixup_prob': 0.15,
- 'mosaic_type': 'yolov5_mosaic',
- 'mixup_type': 'yolov5_mixup',
- 'mixup_scale': [0.5, 1.5]
- }
- ssd_trans_config = {
- 'aug_type': 'ssd',
- 'mosaic_prob': 0.0,
- 'mixup_prob': 0.0
- }
- transform = build_transform(img_size, yolov5_trans_config, is_train)
- dataset = OurDataset(
- img_size=img_size,
- data_dir=args.root,
- image_set='train',
- trans_config=yolov5_trans_config,
- transform=transform,
- is_train=is_train
- )
-
- np.random.seed(0)
- class_colors = [(np.random.randint(255),
- np.random.randint(255),
- np.random.randint(255)) for _ in range(80)]
- print('Data length: ', len(dataset))
- for i in range(1000):
- image, target, deltas = dataset.pull_item(i)
- # to numpy
- image = image.permute(1, 2, 0).numpy()
- # to uint8
- image = image.astype(np.uint8)
- image = image.copy()
- img_h, img_w = image.shape[:2]
- boxes = target["boxes"]
- labels = target["labels"]
- for box, label in zip(boxes, labels):
- x1, y1, x2, y2 = box
- cls_id = int(label)
- color = class_colors[cls_id]
- # class name
- label = our_class_labels[cls_id]
- image = cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
- # put the test on the bbox
- cv2.putText(image, label, (int(x1), int(y1 - 5)), 0, 0.5, color, 1, lineType=cv2.LINE_AA)
- cv2.imshow('gt', image)
- # cv2.imwrite(str(i)+'.jpg', img)
- cv2.waitKey(0)
|