build.py 3.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. import os
  2. try:
  3. from .voc import VOCDetection
  4. from .coco import COCODataset
  5. from .ourdataset import OurDataset
  6. from .data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  7. from .data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  8. except:
  9. import sys
  10. sys.path.append('.')
  11. from voc import VOCDetection
  12. from coco import COCODataset
  13. from ourdataset import OurDataset
  14. from data_augment.ssd_augment import SSDAugmentation, SSDBaseTransform
  15. from data_augment.yolov5_augment import YOLOv5Augmentation, YOLOv5BaseTransform
  16. # ------------------------------ Dataset ------------------------------
  17. def build_dataset(args, data_cfg, trans_config, transform, is_train=False):
  18. # Basic parameters
  19. data_dir = os.path.join(args.root, data_cfg['data_name'])
  20. num_classes = data_cfg['num_classes']
  21. class_names = data_cfg['class_names']
  22. class_indexs = data_cfg['class_indexs']
  23. dataset_info = {
  24. 'num_classes': num_classes,
  25. 'class_names': class_names,
  26. 'class_indexs': class_indexs
  27. }
  28. # Build dataset class
  29. ## VOC dataset
  30. if args.dataset == 'voc':
  31. dataset = VOCDetection(
  32. img_size=args.img_size,
  33. data_dir=data_dir,
  34. image_sets=[('2007', 'trainval'), ('2012', 'trainval')] if is_train else [('2007', 'test')],
  35. transform=transform,
  36. trans_config=trans_config
  37. )
  38. ## COCO dataset
  39. elif args.dataset == 'coco':
  40. dataset = COCODataset(
  41. img_size=args.img_size,
  42. data_dir=data_dir,
  43. image_set='train2017' if is_train else 'val2017',
  44. transform=transform,
  45. trans_config=trans_config
  46. )
  47. ## Custom dataset
  48. elif args.dataset == 'ourdataset':
  49. dataset = OurDataset(
  50. data_dir=data_dir,
  51. img_size=args.img_size,
  52. image_set='train' if is_train else 'val',
  53. transform=transform,
  54. trans_config=trans_config,
  55. )
  56. return dataset, dataset_info
  57. # ------------------------------ Transform ------------------------------
  58. def build_transform(args, trans_config, max_stride=32, is_train=False):
  59. # Modify trans_config
  60. ## mosaic prob.
  61. if args.mosaic is not None:
  62. trans_config['mosaic_prob']=args.mosaic if is_train else 0.0
  63. else:
  64. trans_config['mosaic_prob']=trans_config['mosaic_prob'] if is_train else 0.0
  65. ## mixup prob.
  66. if args.mixup is not None:
  67. trans_config['mixup_prob']=args.mixup if is_train else 0.0
  68. else:
  69. trans_config['mixup_prob']=trans_config['mixup_prob'] if is_train else 0.0
  70. # Transform
  71. if trans_config['aug_type'] == 'ssd':
  72. if is_train:
  73. transform = SSDAugmentation(img_size=args.img_size,)
  74. else:
  75. transform = SSDBaseTransform(img_size=args.img_size,)
  76. elif trans_config['aug_type'] == 'yolov5':
  77. if is_train:
  78. transform = YOLOv5Augmentation(
  79. img_size=args.img_size,
  80. trans_config=trans_config
  81. )
  82. else:
  83. transform = YOLOv5BaseTransform(
  84. img_size=args.img_size,
  85. max_stride=max_stride
  86. )
  87. return transform, trans_config