yolox_config.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. # YOLOx Config
  2. yolox_cfg = {
  3. 'yolox_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. # ---------------- Train config ----------------
  31. ## input
  32. 'multi_scale': [0.5, 1.5], # 320 -> 960
  33. 'trans_type': 'yolox_tiny',
  34. # ---------------- Assignment config ----------------
  35. ## matcher
  36. 'matcher': {'center_sampling_radius': 2.5,
  37. 'topk_candicate': 10},
  38. # ---------------- Loss config ----------------
  39. ## loss weight
  40. 'loss_obj_weight': 1.0,
  41. 'loss_cls_weight': 1.0,
  42. 'loss_box_weight': 5.0,
  43. # ---------------- Train config ----------------
  44. ## close strong augmentation
  45. 'no_aug_epoch': 20,
  46. ## optimizer
  47. 'optimizer': 'sgd', # optional: sgd, AdamW
  48. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  49. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  50. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  51. ## model EMA
  52. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  53. 'ema_tau': 2000,
  54. ## lr schedule
  55. 'scheduler': 'linear',
  56. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  57. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  58. 'warmup_momentum': 0.8,
  59. 'warmup_bias_lr': 0.1,
  60. },
  61. 'yolox_s':{
  62. # ---------------- Model config ----------------
  63. ## Backbone
  64. 'backbone': 'cspdarknet',
  65. 'pretrained': True,
  66. 'bk_act': 'silu',
  67. 'bk_norm': 'BN',
  68. 'bk_dpw': False,
  69. 'width': 0.50,
  70. 'depth': 0.34,
  71. 'stride': [8, 16, 32], # P3, P4, P5
  72. 'max_stride': 32,
  73. ## FPN
  74. 'fpn': 'yolov5_pafpn',
  75. 'fpn_reduce_layer': 'Conv',
  76. 'fpn_downsample_layer': 'Conv',
  77. 'fpn_core_block': 'CSPBlock',
  78. 'fpn_act': 'silu',
  79. 'fpn_norm': 'BN',
  80. 'fpn_depthwise': False,
  81. ## Head
  82. 'head': 'decoupled_head',
  83. 'head_act': 'silu',
  84. 'head_norm': 'BN',
  85. 'num_cls_head': 2,
  86. 'num_reg_head': 2,
  87. 'head_depthwise': False,
  88. # ---------------- Train config ----------------
  89. ## input
  90. 'multi_scale': [0.5, 1.5], # 320 -> 960
  91. 'trans_type': 'yolox_small',
  92. # ---------------- Assignment config ----------------
  93. ## matcher
  94. 'matcher': {'center_sampling_radius': 2.5,
  95. 'topk_candicate': 10},
  96. # ---------------- Loss config ----------------
  97. ## loss weight
  98. 'loss_obj_weight': 1.0,
  99. 'loss_cls_weight': 1.0,
  100. 'loss_box_weight': 5.0,
  101. # ---------------- Train config ----------------
  102. ## close strong augmentation
  103. 'no_aug_epoch': 20,
  104. ## optimizer
  105. 'optimizer': 'sgd', # optional: sgd, AdamW
  106. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  107. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  108. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  109. ## model EMA
  110. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  111. 'ema_tau': 2000,
  112. ## lr schedule
  113. 'scheduler': 'linear',
  114. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  115. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  116. 'warmup_momentum': 0.8,
  117. 'warmup_bias_lr': 0.1,
  118. },
  119. 'yolox_m':{
  120. # ---------------- Model config ----------------
  121. ## Backbone
  122. 'backbone': 'cspdarknet',
  123. 'pretrained': True,
  124. 'bk_act': 'silu',
  125. 'bk_norm': 'BN',
  126. 'bk_dpw': False,
  127. 'width': 0.75,
  128. 'depth': 0.67,
  129. 'stride': [8, 16, 32], # P3, P4, P5
  130. 'max_stride': 32,
  131. ## FPN
  132. 'fpn': 'yolov5_pafpn',
  133. 'fpn_reduce_layer': 'Conv',
  134. 'fpn_downsample_layer': 'Conv',
  135. 'fpn_core_block': 'CSPBlock',
  136. 'fpn_act': 'silu',
  137. 'fpn_norm': 'BN',
  138. 'fpn_depthwise': False,
  139. ## Head
  140. 'head': 'decoupled_head',
  141. 'head_act': 'silu',
  142. 'head_norm': 'BN',
  143. 'num_cls_head': 2,
  144. 'num_reg_head': 2,
  145. 'head_depthwise': False,
  146. # ---------------- Train config ----------------
  147. ## input
  148. 'multi_scale': [0.5, 1.5], # 320 -> 960
  149. 'trans_type': 'yolox_medium',
  150. # ---------------- Assignment config ----------------
  151. ## matcher
  152. 'matcher': {'center_sampling_radius': 2.5,
  153. 'topk_candicate': 10},
  154. # ---------------- Loss config ----------------
  155. ## loss weight
  156. 'loss_obj_weight': 1.0,
  157. 'loss_cls_weight': 1.0,
  158. 'loss_box_weight': 5.0,
  159. # ---------------- Train config ----------------
  160. ## close strong augmentation
  161. 'no_aug_epoch': 20,
  162. ## optimizer
  163. 'optimizer': 'sgd', # optional: sgd, AdamW
  164. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  165. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  166. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  167. ## model EMA
  168. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  169. 'ema_tau': 2000,
  170. ## lr schedule
  171. 'scheduler': 'linear',
  172. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  173. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  174. 'warmup_momentum': 0.8,
  175. 'warmup_bias_lr': 0.1,
  176. },
  177. 'yolox_l':{
  178. # ---------------- Model config ----------------
  179. ## Backbone
  180. 'backbone': 'cspdarknet',
  181. 'pretrained': False,
  182. 'bk_act': 'silu',
  183. 'bk_norm': 'BN',
  184. 'bk_dpw': False,
  185. 'width': 1.0,
  186. 'depth': 1.0,
  187. 'stride': [8, 16, 32], # P3, P4, P5
  188. 'max_stride': 32,
  189. ## FPN
  190. 'fpn': 'yolov5_pafpn',
  191. 'fpn_reduce_layer': 'Conv',
  192. 'fpn_downsample_layer': 'Conv',
  193. 'fpn_core_block': 'CSPBlock',
  194. 'fpn_act': 'silu',
  195. 'fpn_norm': 'BN',
  196. 'fpn_depthwise': False,
  197. ## Head
  198. 'head': 'decoupled_head',
  199. 'head_act': 'silu',
  200. 'head_norm': 'BN',
  201. 'num_cls_head': 2,
  202. 'num_reg_head': 2,
  203. 'head_depthwise': False,
  204. # ---------------- Train config ----------------
  205. ## input
  206. 'multi_scale': [0.5, 1.25], # 320 -> 800
  207. 'trans_type': 'yolox_large',
  208. # ---------------- Assignment config ----------------
  209. ## matcher
  210. 'matcher': {'center_sampling_radius': 2.5,
  211. 'topk_candicate': 10},
  212. # ---------------- Loss config ----------------
  213. ## loss weight
  214. 'loss_obj_weight': 1.0,
  215. 'loss_cls_weight': 1.0,
  216. 'loss_box_weight': 5.0,
  217. # ---------------- Train config ----------------
  218. ## close strong augmentation
  219. 'no_aug_epoch': 20,
  220. ## optimizer
  221. 'optimizer': 'sgd', # optional: sgd, AdamW
  222. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  223. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  224. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  225. ## model EMA
  226. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  227. 'ema_tau': 2000,
  228. ## lr schedule
  229. 'scheduler': 'linear',
  230. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  231. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  232. 'warmup_momentum': 0.8,
  233. 'warmup_bias_lr': 0.1,
  234. },
  235. 'yolox_x':{
  236. # ---------------- Model config ----------------
  237. ## Backbone
  238. 'backbone': 'cspdarknet',
  239. 'pretrained': True,
  240. 'bk_act': 'silu',
  241. 'bk_norm': 'BN',
  242. 'bk_dpw': False,
  243. 'width': 1.25,
  244. 'depth': 1.34,
  245. 'stride': [8, 16, 32], # P3, P4, P5
  246. 'max_stride': 32,
  247. ## FPN
  248. 'fpn': 'yolov5_pafpn',
  249. 'fpn_reduce_layer': 'Conv',
  250. 'fpn_downsample_layer': 'Conv',
  251. 'fpn_core_block': 'CSPBlock',
  252. 'fpn_act': 'silu',
  253. 'fpn_norm': 'BN',
  254. 'fpn_depthwise': False,
  255. ## Head
  256. 'head': 'decoupled_head',
  257. 'head_act': 'silu',
  258. 'head_norm': 'BN',
  259. 'num_cls_head': 2,
  260. 'num_reg_head': 2,
  261. 'head_depthwise': False,
  262. # ---------------- Train config ----------------
  263. ## input
  264. 'multi_scale': [0.5, 1.25], # 320 -> 800
  265. 'trans_type': 'yolox_huge',
  266. # ---------------- Assignment config ----------------
  267. ## matcher
  268. 'matcher': {'center_sampling_radius': 2.5,
  269. 'topk_candicate': 10},
  270. # ---------------- Loss config ----------------
  271. ## loss weight
  272. 'loss_obj_weight': 1.0,
  273. 'loss_cls_weight': 1.0,
  274. 'loss_box_weight': 5.0,
  275. # ---------------- Train config ----------------
  276. ## close strong augmentation
  277. 'no_aug_epoch': 20,
  278. ## optimizer
  279. 'optimizer': 'sgd', # optional: sgd, AdamW
  280. 'momentum': 0.9, # SGD: 0.9; AdamW: None
  281. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  282. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  283. ## model EMA
  284. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  285. 'ema_tau': 2000,
  286. ## lr schedule
  287. 'scheduler': 'linear',
  288. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  289. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  290. 'warmup_momentum': 0.8,
  291. 'warmup_bias_lr': 0.1,
  292. },
  293. }