yolov5_config.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. # YOLOv5 Config
  2. yolov5_cfg = {
  3. 'yolov5_n':{
  4. # ---------------- Model config ----------------
  5. ## Backbone
  6. 'backbone': 'cspdarknet',
  7. 'pretrained': True,
  8. 'bk_act': 'silu',
  9. 'bk_norm': 'BN',
  10. 'bk_dpw': False,
  11. 'width': 0.25,
  12. 'depth': 0.34,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. 'max_stride': 32,
  15. ## FPN
  16. 'fpn': 'yolov5_pafpn',
  17. 'fpn_reduce_layer': 'Conv',
  18. 'fpn_downsample_layer': 'Conv',
  19. 'fpn_core_block': 'CSPBlock',
  20. 'fpn_act': 'silu',
  21. 'fpn_norm': 'BN',
  22. 'fpn_depthwise': False,
  23. ## Head
  24. 'head': 'decoupled_head',
  25. 'head_act': 'silu',
  26. 'head_norm': 'BN',
  27. 'num_cls_head': 2,
  28. 'num_reg_head': 2,
  29. 'head_depthwise': False,
  30. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  31. [30, 61], [62, 45], [59, 119], # P4
  32. [116, 90], [156, 198], [373, 326]], # P5
  33. # ---------------- Train config ----------------
  34. ## input
  35. 'multi_scale': [0.5, 1.0], # 320 -> 640
  36. 'trans_type': 'yolov5_tiny',
  37. # ---------------- Assignment config ----------------
  38. ## matcher
  39. 'anchor_thresh': 4.0,
  40. # ---------------- Loss config ----------------
  41. ## loss weight
  42. 'loss_obj_weight': 1.0,
  43. 'loss_cls_weight': 1.0,
  44. 'loss_box_weight': 5.0,
  45. # ---------------- Train config ----------------
  46. ## close strong augmentation
  47. 'no_aug_epoch': 20,
  48. ## optimizer
  49. 'optimizer': 'sgd', # optional: sgd, AdamW
  50. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  51. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  52. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  53. ## model EMA
  54. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  55. 'ema_tau': 2000,
  56. ## lr schedule
  57. 'scheduler': 'linear',
  58. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  59. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  60. 'warmup_momentum': 0.8,
  61. 'warmup_bias_lr': 0.1,
  62. },
  63. 'yolov5_s':{
  64. # ---------------- Model config ----------------
  65. ## Backbone
  66. 'backbone': 'cspdarknet',
  67. 'pretrained': True,
  68. 'bk_act': 'silu',
  69. 'bk_norm': 'BN',
  70. 'bk_dpw': False,
  71. 'width': 0.50,
  72. 'depth': 0.34,
  73. 'stride': [8, 16, 32], # P3, P4, P5
  74. 'max_stride': 32,
  75. ## FPN
  76. 'fpn': 'yolov5_pafpn',
  77. 'fpn_reduce_layer': 'Conv',
  78. 'fpn_downsample_layer': 'Conv',
  79. 'fpn_core_block': 'CSPBlock',
  80. 'fpn_act': 'silu',
  81. 'fpn_norm': 'BN',
  82. 'fpn_depthwise': False,
  83. ## Head
  84. 'head': 'decoupled_head',
  85. 'head_act': 'silu',
  86. 'head_norm': 'BN',
  87. 'num_cls_head': 2,
  88. 'num_reg_head': 2,
  89. 'head_depthwise': False,
  90. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  91. [30, 61], [62, 45], [59, 119], # P4
  92. [116, 90], [156, 198], [373, 326]], # P5
  93. # ---------------- Train config ----------------
  94. ## input
  95. 'multi_scale': [0.5, 1.0], # 320 -> 640
  96. 'trans_type': 'yolov5_small',
  97. # ---------------- Assignment config ----------------
  98. ## matcher
  99. 'anchor_thresh': 4.0,
  100. # ---------------- Loss config ----------------
  101. ## loss weight
  102. 'loss_obj_weight': 1.0,
  103. 'loss_cls_weight': 1.0,
  104. 'loss_box_weight': 5.0,
  105. # ---------------- Train config ----------------
  106. ## close strong augmentation
  107. 'no_aug_epoch': 20,
  108. ## optimizer
  109. 'optimizer': 'sgd', # optional: sgd, AdamW
  110. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  111. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  112. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  113. ## model EMA
  114. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  115. 'ema_tau': 2000,
  116. ## lr schedule
  117. 'scheduler': 'linear',
  118. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  119. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  120. 'warmup_momentum': 0.8,
  121. 'warmup_bias_lr': 0.1,
  122. },
  123. 'yolov5_m':{
  124. # ---------------- Model config ----------------
  125. ## Backbone
  126. 'backbone': 'cspdarknet',
  127. 'pretrained': True,
  128. 'bk_act': 'silu',
  129. 'bk_norm': 'BN',
  130. 'bk_dpw': False,
  131. 'width': 0.75,
  132. 'depth': 0.67,
  133. 'stride': [8, 16, 32], # P3, P4, P5
  134. 'max_stride': 32,
  135. ## FPN
  136. 'fpn': 'yolov5_pafpn',
  137. 'fpn_reduce_layer': 'Conv',
  138. 'fpn_downsample_layer': 'Conv',
  139. 'fpn_core_block': 'CSPBlock',
  140. 'fpn_act': 'silu',
  141. 'fpn_norm': 'BN',
  142. 'fpn_depthwise': False,
  143. ## Head
  144. 'head': 'decoupled_head',
  145. 'head_act': 'silu',
  146. 'head_norm': 'BN',
  147. 'num_cls_head': 2,
  148. 'num_reg_head': 2,
  149. 'head_depthwise': False,
  150. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  151. [30, 61], [62, 45], [59, 119], # P4
  152. [116, 90], [156, 198], [373, 326]], # P5
  153. # ---------------- Train config ----------------
  154. ## input
  155. 'multi_scale': [0.5, 1.0], # 320 -> 640
  156. 'trans_type': 'yolov5_medium',
  157. # ---------------- Assignment config ----------------
  158. ## matcher
  159. 'anchor_thresh': 4.0,
  160. # ---------------- Loss config ----------------
  161. ## loss weight
  162. 'loss_obj_weight': 1.0,
  163. 'loss_cls_weight': 1.0,
  164. 'loss_box_weight': 5.0,
  165. # ---------------- Train config ----------------
  166. ## close strong augmentation
  167. 'no_aug_epoch': 20,
  168. ## optimizer
  169. 'optimizer': 'sgd', # optional: sgd, AdamW
  170. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  171. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  172. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  173. ## model EMA
  174. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  175. 'ema_tau': 2000,
  176. ## lr schedule
  177. 'scheduler': 'linear',
  178. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  179. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  180. 'warmup_momentum': 0.8,
  181. 'warmup_bias_lr': 0.1,
  182. },
  183. 'yolov5_l':{
  184. # ---------------- Model config ----------------
  185. ## Backbone
  186. 'backbone': 'cspdarknet',
  187. 'pretrained': True,
  188. 'bk_act': 'silu',
  189. 'bk_norm': 'BN',
  190. 'bk_dpw': False,
  191. 'width': 1.0,
  192. 'depth': 1.0,
  193. 'stride': [8, 16, 32], # P3, P4, P5
  194. 'max_stride': 32,
  195. ## FPN
  196. 'fpn': 'yolov5_pafpn',
  197. 'fpn_reduce_layer': 'Conv',
  198. 'fpn_downsample_layer': 'Conv',
  199. 'fpn_core_block': 'CSPBlock',
  200. 'fpn_act': 'silu',
  201. 'fpn_norm': 'BN',
  202. 'fpn_depthwise': False,
  203. ## Head
  204. 'head': 'decoupled_head',
  205. 'head_act': 'silu',
  206. 'head_norm': 'BN',
  207. 'num_cls_head': 2,
  208. 'num_reg_head': 2,
  209. 'head_depthwise': False,
  210. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  211. [30, 61], [62, 45], [59, 119], # P4
  212. [116, 90], [156, 198], [373, 326]], # P5
  213. # ---------------- Train config ----------------
  214. ## input
  215. 'multi_scale': [0.5, 1.0], # 320 -> 640
  216. 'trans_type': 'yolov5_large',
  217. # ---------------- Assignment config ----------------
  218. ## matcher
  219. 'anchor_thresh': 4.0,
  220. # ---------------- Loss config ----------------
  221. ## loss weight
  222. 'loss_obj_weight': 1.0,
  223. 'loss_cls_weight': 1.0,
  224. 'loss_box_weight': 5.0,
  225. # ---------------- Train config ----------------
  226. ## close strong augmentation
  227. 'no_aug_epoch': 20,
  228. ## optimizer
  229. 'optimizer': 'sgd', # optional: sgd, AdamW
  230. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  231. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  232. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  233. ## model EMA
  234. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  235. 'ema_tau': 2000,
  236. ## lr schedule
  237. 'scheduler': 'linear',
  238. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  239. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  240. 'warmup_momentum': 0.8,
  241. 'warmup_bias_lr': 0.1,
  242. },
  243. 'yolov5_x':{
  244. # ---------------- Model config ----------------
  245. ## Backbone
  246. 'backbone': 'cspdarknet',
  247. 'pretrained': True,
  248. 'bk_act': 'silu',
  249. 'bk_norm': 'BN',
  250. 'bk_dpw': False,
  251. 'width': 1.25,
  252. 'depth': 1.34,
  253. 'stride': [8, 16, 32], # P3, P4, P5
  254. 'max_stride': 32,
  255. ## FPN
  256. 'fpn': 'yolov5_pafpn',
  257. 'fpn_reduce_layer': 'Conv',
  258. 'fpn_downsample_layer': 'Conv',
  259. 'fpn_core_block': 'CSPBlock',
  260. 'fpn_act': 'silu',
  261. 'fpn_norm': 'BN',
  262. 'fpn_depthwise': False,
  263. ## Head
  264. 'head': 'decoupled_head',
  265. 'head_act': 'silu',
  266. 'head_norm': 'BN',
  267. 'num_cls_head': 2,
  268. 'num_reg_head': 2,
  269. 'head_depthwise': False,
  270. 'anchor_size': [[10, 13], [16, 30], [33, 23], # P3
  271. [30, 61], [62, 45], [59, 119], # P4
  272. [116, 90], [156, 198], [373, 326]], # P5
  273. # ---------------- Train config ----------------
  274. ## input
  275. 'multi_scale': [0.5, 1.0], # 320 -> 640
  276. 'trans_type': 'yolov5_huge',
  277. # ---------------- Assignment config ----------------
  278. ## matcher
  279. 'anchor_thresh': 4.0,
  280. # ---------------- Loss config ----------------
  281. ## loss weight
  282. 'loss_obj_weight': 1.0,
  283. 'loss_cls_weight': 1.0,
  284. 'loss_box_weight': 5.0,
  285. # ---------------- Train config ----------------
  286. ## close strong augmentation
  287. 'no_aug_epoch': 20,
  288. ## optimizer
  289. 'optimizer': 'sgd', # optional: sgd, AdamW
  290. 'momentum': 0.937, # SGD: 0.937; AdamW: None
  291. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  292. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  293. ## model EMA
  294. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  295. 'ema_tau': 2000,
  296. ## lr schedule
  297. 'scheduler': 'linear',
  298. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  299. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  300. 'warmup_momentum': 0.8,
  301. 'warmup_bias_lr': 0.1,
  302. },
  303. }