yolov3.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. import torch
  2. import torch.nn as nn
  3. from utils.nms import multiclass_nms
  4. from .yolov3_backbone import build_backbone
  5. from .yolov3_neck import build_neck
  6. from .yolov3_fpn import build_fpn
  7. from .yolov3_head import build_head
  8. # YOLOv3
  9. class YOLOv3(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. img_size=None,
  14. num_classes=20,
  15. conf_thresh=0.01,
  16. topk=100,
  17. nms_thresh=0.5,
  18. trainable=False):
  19. super(YOLOv3, self).__init__()
  20. # ------------------- Basic parameters -------------------
  21. self.cfg = cfg # 模型配置文件
  22. self.img_size = img_size # 输入图像大小
  23. self.device = device # cuda或者是cpu
  24. self.num_classes = num_classes # 类别的数量
  25. self.trainable = trainable # 训练的标记
  26. self.conf_thresh = conf_thresh # 得分阈值
  27. self.nms_thresh = nms_thresh # NMS阈值
  28. self.topk = topk # topk
  29. self.stride = [8, 16, 32] # 网络的输出步长
  30. # ------------------- Anchor box -------------------
  31. self.num_levels = 3
  32. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  33. self.anchor_size = torch.as_tensor(
  34. cfg['anchor_size']
  35. ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  36. # ------------------- Network Structure -------------------
  37. ## 主干网络
  38. self.backbone, feats_dim = build_backbone(
  39. cfg['backbone'], trainable&cfg['pretrained'])
  40. ## 颈部网络
  41. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  42. feats_dim[-1] = self.neck.out_dim
  43. ## 特征金字塔
  44. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  45. self.head_dim = self.fpn.out_dim
  46. ## 检测头
  47. self.non_shared_heads = nn.ModuleList(
  48. [build_head(cfg, head_dim, head_dim, num_classes)
  49. for head_dim in self.head_dim
  50. ])
  51. ## 预测层
  52. self.obj_preds = nn.ModuleList(
  53. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  54. for head in self.non_shared_heads
  55. ])
  56. self.cls_preds = nn.ModuleList(
  57. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  58. for head in self.non_shared_heads
  59. ])
  60. self.reg_preds = nn.ModuleList(
  61. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  62. for head in self.non_shared_heads
  63. ])
  64. # --------- Network Initialization ----------
  65. self.init_yolo()
  66. def init_yolo(self):
  67. # Init yolo
  68. for m in self.modules():
  69. if isinstance(m, nn.BatchNorm2d):
  70. m.eps = 1e-3
  71. m.momentum = 0.03
  72. # Init bias
  73. init_prob = 0.01
  74. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  75. # obj pred
  76. for obj_pred in self.obj_preds:
  77. b = obj_pred.bias.view(self.num_anchors, -1)
  78. b.data.fill_(bias_value.item())
  79. obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  80. # cls pred
  81. for cls_pred in self.cls_preds:
  82. b = cls_pred.bias.view(self.num_anchors, -1)
  83. b.data.fill_(bias_value.item())
  84. cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
  85. def generate_anchors(self, level, fmp_size):
  86. """
  87. fmp_size: (List) [H, W]
  88. """
  89. fmp_h, fmp_w = fmp_size
  90. # [KA, 2]
  91. anchor_size = self.anchor_size[level]
  92. # generate grid cells
  93. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  94. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  95. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  96. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  97. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  98. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  99. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  100. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  101. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  102. return anchors
  103. def decode_boxes(self, level, anchors, reg_pred):
  104. """
  105. 将txtytwth转换为常用的x1y1x2y2形式。
  106. """
  107. # 计算预测边界框的中心点坐标和宽高
  108. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  109. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  110. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  111. pred_x1y1 = pred_ctr - pred_wh * 0.5
  112. pred_x2y2 = pred_ctr + pred_wh * 0.5
  113. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  114. return pred_box
  115. def post_process(self, obj_preds, cls_preds, reg_preds, anchors):
  116. """
  117. Input:
  118. obj_preds: List(Tensor) [[H x W, 1], ...]
  119. cls_preds: List(Tensor) [[H x W, C], ...]
  120. reg_preds: List(Tensor) [[H x W, 4], ...]
  121. anchors: List(Tensor) [[H x W, 2], ...]
  122. """
  123. all_scores = []
  124. all_labels = []
  125. all_bboxes = []
  126. for level, (obj_pred_i, cls_pred_i, reg_pred_i, anchor_i) \
  127. in enumerate(zip(obj_preds, cls_preds, reg_preds, anchors)):
  128. # (H x W x KA x C,)
  129. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  130. # Keep top k top scoring indices only.
  131. num_topk = min(self.topk, reg_pred_i.size(0))
  132. # torch.sort is actually faster than .topk (at least on GPUs)
  133. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  134. topk_scores = predicted_prob[:num_topk]
  135. topk_idxs = topk_idxs[:num_topk]
  136. # filter out the proposals with low confidence score
  137. keep_idxs = topk_scores > self.conf_thresh
  138. scores = topk_scores[keep_idxs]
  139. topk_idxs = topk_idxs[keep_idxs]
  140. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  141. labels = topk_idxs % self.num_classes
  142. reg_pred_i = reg_pred_i[anchor_idxs]
  143. anchor_i = anchor_i[anchor_idxs]
  144. # decode box: [M, 4]
  145. bboxes = self.decode_boxes(level, anchor_i, reg_pred_i)
  146. all_scores.append(scores)
  147. all_labels.append(labels)
  148. all_bboxes.append(bboxes)
  149. scores = torch.cat(all_scores)
  150. labels = torch.cat(all_labels)
  151. bboxes = torch.cat(all_bboxes)
  152. # threshold
  153. keep_idxs = scores.gt(self.conf_thresh)
  154. scores = scores[keep_idxs]
  155. labels = labels[keep_idxs]
  156. bboxes = bboxes[keep_idxs]
  157. # to cpu & numpy
  158. scores = scores.cpu().numpy()
  159. labels = labels.cpu().numpy()
  160. bboxes = bboxes.cpu().numpy()
  161. # nms
  162. scores, labels, bboxes = multiclass_nms(
  163. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  164. return bboxes, scores, labels
  165. @torch.no_grad()
  166. def inference(self, x):
  167. # 主干网络
  168. pyramid_feats = self.backbone(x)
  169. # 颈部网络
  170. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  171. # 特征金字塔
  172. pyramid_feats = self.fpn(pyramid_feats)
  173. # 检测头
  174. all_anchors = []
  175. all_obj_preds = []
  176. all_cls_preds = []
  177. all_reg_preds = []
  178. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  179. cls_feat, reg_feat = head(feat)
  180. # [1, C, H, W]
  181. obj_pred = self.obj_preds[level](reg_feat)
  182. cls_pred = self.cls_preds[level](cls_feat)
  183. reg_pred = self.reg_preds[level](reg_feat)
  184. # anchors: [M, 2]
  185. fmp_size = cls_pred.shape[-2:]
  186. anchors = self.generate_anchors(level, fmp_size)
  187. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  188. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  189. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  190. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  191. all_obj_preds.append(obj_pred)
  192. all_cls_preds.append(cls_pred)
  193. all_reg_preds.append(reg_pred)
  194. all_anchors.append(anchors)
  195. # post process
  196. bboxes, scores, labels = self.post_process(
  197. all_obj_preds, all_cls_preds, all_reg_preds, all_anchors)
  198. return bboxes, scores, labels
  199. def forward(self, x):
  200. if not self.trainable:
  201. return self.inference(x)
  202. else:
  203. bs = x.shape[0]
  204. # 主干网络
  205. pyramid_feats = self.backbone(x)
  206. # 颈部网络
  207. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  208. # 特征金字塔
  209. pyramid_feats = self.fpn(pyramid_feats)
  210. # 检测头
  211. all_fmp_sizes = []
  212. all_obj_preds = []
  213. all_cls_preds = []
  214. all_box_preds = []
  215. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  216. cls_feat, reg_feat = head(feat)
  217. # [B, C, H, W]
  218. obj_pred = self.obj_preds[level](reg_feat)
  219. cls_pred = self.cls_preds[level](cls_feat)
  220. reg_pred = self.reg_preds[level](reg_feat)
  221. fmp_size = cls_pred.shape[-2:]
  222. # generate anchor boxes: [M, 4]
  223. anchors = self.generate_anchors(level, fmp_size)
  224. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  225. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  226. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  227. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  228. # decode bbox
  229. box_pred = self.decode_boxes(level, anchors, reg_pred)
  230. all_obj_preds.append(obj_pred)
  231. all_cls_preds.append(cls_pred)
  232. all_box_preds.append(box_pred)
  233. all_fmp_sizes.append(fmp_size)
  234. # output dict
  235. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  236. "pred_cls": all_cls_preds, # List [B, M, C]
  237. "pred_box": all_box_preds, # List [B, M, 4]
  238. 'fmp_sizes': all_fmp_sizes, # List
  239. 'strides': self.stride, # List
  240. }
  241. return outputs