yolox_neck.py 1.4 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. import torch
  2. import torch.nn as nn
  3. try:
  4. from .yolox_basic import Conv
  5. except:
  6. from yolox_basic import Conv
  7. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  8. class SPPF(nn.Module):
  9. """
  10. This code referenced to https://github.com/ultralytics/yolov5
  11. """
  12. def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type='', norm_type=''):
  13. super().__init__()
  14. inter_dim = int(in_dim * expand_ratio)
  15. self.out_dim = out_dim
  16. self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
  17. self.cv2 = Conv(inter_dim * 4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
  18. self.m = nn.MaxPool2d(kernel_size=pooling_size, stride=1, padding=pooling_size // 2)
  19. def forward(self, x):
  20. x = self.cv1(x)
  21. y1 = self.m(x)
  22. y2 = self.m(y1)
  23. return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
  24. def build_neck(cfg, in_dim, out_dim):
  25. model = cfg['neck']
  26. print('==============================')
  27. print('Neck: {}'.format(model))
  28. # build neck
  29. if model == 'sppf':
  30. neck = SPPF(
  31. in_dim=in_dim,
  32. out_dim=out_dim,
  33. expand_ratio=cfg['expand_ratio'],
  34. pooling_size=cfg['pooling_size'],
  35. act_type=cfg['neck_act'],
  36. norm_type=cfg['neck_norm']
  37. )
  38. return neck