| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- import torch
- import torch.nn as nn
- try:
- from .yolox_basic import Conv
- except:
- from yolox_basic import Conv
- # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
- class SPPF(nn.Module):
- """
- This code referenced to https://github.com/ultralytics/yolov5
- """
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, pooling_size=5, act_type='', norm_type=''):
- super().__init__()
- inter_dim = int(in_dim * expand_ratio)
- self.out_dim = out_dim
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(inter_dim * 4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.m = nn.MaxPool2d(kernel_size=pooling_size, stride=1, padding=pooling_size // 2)
- def forward(self, x):
- x = self.cv1(x)
- y1 = self.m(x)
- y2 = self.m(y1)
- return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
- def build_neck(cfg, in_dim, out_dim):
- model = cfg['neck']
- print('==============================')
- print('Neck: {}'.format(model))
- # build neck
- if model == 'sppf':
- neck = SPPF(
- in_dim=in_dim,
- out_dim=out_dim,
- expand_ratio=cfg['expand_ratio'],
- pooling_size=cfg['pooling_size'],
- act_type=cfg['neck_act'],
- norm_type=cfg['neck_norm']
- )
- return neck
-
|