yolox.py 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. import torch
  2. import torch.nn as nn
  3. from .yolox_backbone import build_backbone
  4. from .yolox_fpn import build_fpn
  5. from .yolox_head import build_head
  6. from utils.misc import multiclass_nms
  7. # YOLOX
  8. class YOLOX(nn.Module):
  9. def __init__(self,
  10. cfg,
  11. device,
  12. num_classes=20,
  13. conf_thresh=0.01,
  14. nms_thresh=0.5,
  15. topk=100,
  16. trainable=False):
  17. super(YOLOX, self).__init__()
  18. # --------- Basic Parameters ----------
  19. self.cfg = cfg
  20. self.device = device
  21. self.stride = [8, 16, 32]
  22. self.num_classes = num_classes
  23. self.trainable = trainable
  24. self.conf_thresh = conf_thresh
  25. self.nms_thresh = nms_thresh
  26. self.topk = topk
  27. # ------------------- Network Structure -------------------
  28. ## 主干网络
  29. self.backbone, feats_dim = build_backbone(cfg, trainable&cfg['pretrained'])
  30. ## 颈部网络: 特征金字塔
  31. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  32. self.head_dim = self.fpn.out_dim
  33. ## 检测头
  34. self.non_shared_heads = nn.ModuleList(
  35. [build_head(cfg, head_dim, head_dim, num_classes)
  36. for head_dim in self.head_dim
  37. ])
  38. ## 预测层
  39. self.obj_preds = nn.ModuleList(
  40. [nn.Conv2d(head.reg_out_dim, 1, kernel_size=1)
  41. for head in self.non_shared_heads
  42. ])
  43. self.cls_preds = nn.ModuleList(
  44. [nn.Conv2d(head.cls_out_dim, self.num_classes, kernel_size=1)
  45. for head in self.non_shared_heads
  46. ])
  47. self.reg_preds = nn.ModuleList(
  48. [nn.Conv2d(head.reg_out_dim, 4, kernel_size=1)
  49. for head in self.non_shared_heads
  50. ])
  51. # ---------------------- Basic Functions ----------------------
  52. ## generate anchor points
  53. def generate_anchors(self, level, fmp_size):
  54. """
  55. fmp_size: (List) [H, W]
  56. """
  57. # generate grid cells
  58. fmp_h, fmp_w = fmp_size
  59. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  60. # [H, W, 2] -> [HW, 2]
  61. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  62. anchor_xy += 0.5 # add center offset
  63. anchor_xy *= self.stride[level]
  64. anchors = anchor_xy.to(self.device)
  65. return anchors
  66. ## post-process
  67. def post_process(self, obj_preds, cls_preds, box_preds):
  68. """
  69. Input:
  70. obj_preds: List(Tensor) [[H x W, 1], ...]
  71. cls_preds: List(Tensor) [[H x W, C], ...]
  72. box_preds: List(Tensor) [[H x W, 4], ...]
  73. anchors: List(Tensor) [[H x W, 2], ...]
  74. """
  75. all_scores = []
  76. all_labels = []
  77. all_bboxes = []
  78. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  79. # (H x W x KA x C,)
  80. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  81. # Keep top k top scoring indices only.
  82. num_topk = min(self.topk, box_pred_i.size(0))
  83. # torch.sort is actually faster than .topk (at least on GPUs)
  84. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  85. topk_scores = predicted_prob[:num_topk]
  86. topk_idxs = topk_idxs[:num_topk]
  87. # filter out the proposals with low confidence score
  88. keep_idxs = topk_scores > self.conf_thresh
  89. scores = topk_scores[keep_idxs]
  90. topk_idxs = topk_idxs[keep_idxs]
  91. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  92. labels = topk_idxs % self.num_classes
  93. bboxes = box_pred_i[anchor_idxs]
  94. all_scores.append(scores)
  95. all_labels.append(labels)
  96. all_bboxes.append(bboxes)
  97. scores = torch.cat(all_scores)
  98. labels = torch.cat(all_labels)
  99. bboxes = torch.cat(all_bboxes)
  100. # to cpu & numpy
  101. scores = scores.cpu().numpy()
  102. labels = labels.cpu().numpy()
  103. bboxes = bboxes.cpu().numpy()
  104. # nms
  105. scores, labels, bboxes = multiclass_nms(
  106. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  107. return bboxes, scores, labels
  108. # ---------------------- Main Process for Inference ----------------------
  109. @torch.no_grad()
  110. def inference_single_image(self, x):
  111. # backbone
  112. pyramid_feats = self.backbone(x)
  113. # fpn
  114. pyramid_feats = self.fpn(pyramid_feats)
  115. # non-shared heads
  116. all_obj_preds = []
  117. all_cls_preds = []
  118. all_box_preds = []
  119. all_anchors = []
  120. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  121. cls_feat, reg_feat = head(feat)
  122. # [1, C, H, W]
  123. obj_pred = self.obj_preds[level](reg_feat)
  124. cls_pred = self.cls_preds[level](cls_feat)
  125. reg_pred = self.reg_preds[level](reg_feat)
  126. # anchors: [M, 2]
  127. fmp_size = cls_pred.shape[-2:]
  128. anchors = self.generate_anchors(level, fmp_size)
  129. # [1, C, H, W] -> [H, W, C] -> [M, C]
  130. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  131. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  132. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  133. # decode bbox
  134. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  135. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  136. pred_x1y1 = ctr_pred - wh_pred * 0.5
  137. pred_x2y2 = ctr_pred + wh_pred * 0.5
  138. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  139. all_obj_preds.append(obj_pred)
  140. all_cls_preds.append(cls_pred)
  141. all_box_preds.append(box_pred)
  142. all_anchors.append(anchors)
  143. # post process
  144. bboxes, scores, labels = self.post_process(
  145. all_obj_preds, all_cls_preds, all_box_preds)
  146. return bboxes, scores, labels
  147. def forward(self, x):
  148. if not self.trainable:
  149. return self.inference_single_image(x)
  150. else:
  151. # backbone
  152. pyramid_feats = self.backbone(x)
  153. # fpn
  154. pyramid_feats = self.fpn(pyramid_feats)
  155. # non-shared heads
  156. all_anchors = []
  157. all_obj_preds = []
  158. all_cls_preds = []
  159. all_box_preds = []
  160. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  161. cls_feat, reg_feat = head(feat)
  162. # [B, C, H, W]
  163. obj_pred = self.obj_preds[level](reg_feat)
  164. cls_pred = self.cls_preds[level](cls_feat)
  165. reg_pred = self.reg_preds[level](reg_feat)
  166. B, _, H, W = cls_pred.size()
  167. fmp_size = [H, W]
  168. # generate anchor boxes: [M, 4]
  169. anchors = self.generate_anchors(level, fmp_size)
  170. # [B, C, H, W] -> [B, H, W, C] -> [B, M, C]
  171. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 1)
  172. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, self.num_classes)
  173. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(B, -1, 4)
  174. # decode bbox
  175. ctr_pred = reg_pred[..., :2] * self.stride[level] + anchors[..., :2]
  176. wh_pred = torch.exp(reg_pred[..., 2:]) * self.stride[level]
  177. pred_x1y1 = ctr_pred - wh_pred * 0.5
  178. pred_x2y2 = ctr_pred + wh_pred * 0.5
  179. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  180. all_obj_preds.append(obj_pred)
  181. all_cls_preds.append(cls_pred)
  182. all_box_preds.append(box_pred)
  183. all_anchors.append(anchors)
  184. # output dict
  185. outputs = {"pred_obj": all_obj_preds, # List(Tensor) [B, M, 1]
  186. "pred_cls": all_cls_preds, # List(Tensor) [B, M, C]
  187. "pred_box": all_box_preds, # List(Tensor) [B, M, 4]
  188. "anchors": all_anchors, # List(Tensor) [B, M, 2]
  189. 'strides': self.stride} # List(Int) [8, 16, 32]
  190. return outputs