| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- import torch
- import torch.nn as nn
- try:
- from .yolov8_basic import Conv, ELAN_CSP_Block
- except:
- from yolov8_basic import Conv, ELAN_CSP_Block
- # ---------------------------- ImageNet pretrained weights ----------------------------
- model_urls = {
- 'elan_cspnet_nano': "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_nano.pth",
- 'elan_cspnet_small': None,
- 'elan_cspnet_medium': None,
- 'elan_cspnet_large': "https://github.com/yjh0410/image_classification_pytorch/releases/download/weight/elan_cspnet_large.pth",
- 'elan_cspnet_huge': None,
- }
- # ---------------------------- Basic functions ----------------------------
- ## ELAN-CSPNet
- class ELAN_CSPNet(nn.Module):
- def __init__(self, width=1.0, depth=1.0, ratio=1.0, act_type='silu', norm_type='BN', depthwise=False):
- super(ELAN_CSPNet, self).__init__()
- self.feat_dims = [int(256 * width), int(512 * width), int(512 * width * ratio)]
-
- # stride = 2
- self.layer_1 = Conv(3, int(64*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type)
-
- # stride = 4
- self.layer_2 = nn.Sequential(
- Conv(int(64*width), int(128*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ELAN_CSP_Block(int(128*width), int(128*width), nblocks=int(3*depth), shortcut=True,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- # stride = 8
- self.layer_3 = nn.Sequential(
- Conv(int(128*width), int(256*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ELAN_CSP_Block(int(256*width), int(256*width), nblocks=int(6*depth), shortcut=True,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- # stride = 16
- self.layer_4 = nn.Sequential(
- Conv(int(256*width), int(512*width), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ELAN_CSP_Block(int(512*width), int(512*width), nblocks=int(6*depth), shortcut=True,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- # stride = 32
- self.layer_5 = nn.Sequential(
- Conv(int(512*width), int(512*width*ratio), k=3, p=1, s=2, act_type=act_type, norm_type=norm_type),
- ELAN_CSP_Block(int(512*width*ratio), int(512*width*ratio), nblocks=int(3*depth), shortcut=True,
- act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- c1 = self.layer_1(x)
- c2 = self.layer_2(c1)
- c3 = self.layer_3(c2)
- c4 = self.layer_4(c3)
- c5 = self.layer_5(c4)
- outputs = [c3, c4, c5]
- return outputs
- # ---------------------------- Functions ----------------------------
- ## load pretrained weight
- def load_weight(model, model_name):
- # load weight
- print('Loading pretrained weight ...')
- url = model_urls[model_name]
- if url is not None:
- checkpoint = torch.hub.load_state_dict_from_url(
- url=url, map_location="cpu", check_hash=True)
- # checkpoint state dict
- checkpoint_state_dict = checkpoint.pop("model")
- # model state dict
- model_state_dict = model.state_dict()
- # check
- for k in list(checkpoint_state_dict.keys()):
- if k in model_state_dict:
- shape_model = tuple(model_state_dict[k].shape)
- shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
- if shape_model != shape_checkpoint:
- checkpoint_state_dict.pop(k)
- else:
- checkpoint_state_dict.pop(k)
- print(k)
- model.load_state_dict(checkpoint_state_dict)
- else:
- print('No pretrained for {}'.format(model_name))
- return model
- ## build ELAN-Net
- def build_backbone(cfg, pretrained=False):
- # model
- backbone = ELAN_CSPNet(
- width=cfg['width'],
- depth=cfg['depth'],
- ratio=cfg['ratio'],
- act_type=cfg['bk_act'],
- norm_type=cfg['bk_norm'],
- depthwise=cfg['bk_dpw']
- )
- feat_dims = backbone.feat_dims
-
- # check whether to load imagenet pretrained weight
- if pretrained:
- if cfg['width'] == 0.25 and cfg['depth'] == 0.34 and cfg['ratio'] == 2.0:
- backbone = load_weight(backbone, model_name='elan_cspnet_nano')
- elif cfg['width'] == 0.5 and cfg['depth'] == 0.34 and cfg['ratio'] == 2.0:
- backbone = load_weight(backbone, model_name='elan_cspnet_small')
- elif cfg['width'] == 0.75 and cfg['depth'] == 0.67 and cfg['ratio'] == 1.5:
- backbone = load_weight(backbone, model_name='elan_cspnet_medium')
- elif cfg['width'] == 1.0 and cfg['depth'] == 1.0 and cfg['ratio'] == 1.0:
- backbone = load_weight(backbone, model_name='elan_cspnet_large')
- elif cfg['width'] == 1.25 and cfg['depth'] == 1.0 and cfg['ratio'] == 1.0:
- backbone = load_weight(backbone, model_name='elan_cspnet_huge')
- return backbone, feat_dims
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'pretrained': True,
- 'bk_act': 'silu',
- 'bk_norm': 'BN',
- 'bk_dpw': False,
- 'width': 1.0,
- 'depth': 1.0,
- 'ratio': 1.0,
- }
- model, feats = build_backbone(cfg)
- x = torch.randn(1, 3, 640, 640)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- for out in outputs:
- print(out.shape)
- x = torch.randn(1, 3, 640, 640)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|