| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- import numpy as np
- import torch
- import torch.nn as nn
- # ---------------------------- 2D CNN ----------------------------
- class SiLU(nn.Module):
- """export-friendly version of nn.SiLU()"""
- @staticmethod
- def forward(x):
- return x * torch.sigmoid(x)
- def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
- conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
- return conv
- def get_activation(act_type=None):
- if act_type == 'relu':
- return nn.ReLU(inplace=True)
- elif act_type == 'lrelu':
- return nn.LeakyReLU(0.1, inplace=True)
- elif act_type == 'mish':
- return nn.Mish(inplace=True)
- elif act_type == 'silu':
- return nn.SiLU(inplace=True)
- def get_norm(norm_type, dim):
- if norm_type == 'BN':
- return nn.BatchNorm2d(dim)
- elif norm_type == 'GN':
- return nn.GroupNorm(num_groups=32, num_channels=dim)
- ## Basic conv layer
- class Conv(nn.Module):
- def __init__(self,
- c1, # in channels
- c2, # out channels
- k=1, # kernel size
- p=0, # padding
- s=1, # padding
- d=1, # dilation
- act_type='lrelu', # activation
- norm_type='BN', # normalization
- depthwise=False):
- super(Conv, self).__init__()
- convs = []
- add_bias = False if norm_type else True
- if depthwise:
- convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
- # depthwise conv
- if norm_type:
- convs.append(get_norm(norm_type, c1))
- if act_type:
- convs.append(get_activation(act_type))
- # pointwise conv
- convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
- else:
- convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
- if norm_type:
- convs.append(get_norm(norm_type, c2))
- if act_type:
- convs.append(get_activation(act_type))
-
- self.convs = nn.Sequential(*convs)
- def forward(self, x):
- return self.convs(x)
- # ---------------------------- YOLOv7 Modules ----------------------------
- ## ELAN-Block proposed by YOLOv7
- class ELANBlock(nn.Module):
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, depth=2.0, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANBlock, self).__init__()
- inter_dim = int(in_dim * expand_ratio)
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.Sequential(*[
- Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(round(depth))
- ])
- self.cv4 = nn.Sequential(*[
- Conv(inter_dim, inter_dim, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- for _ in range(round(depth))
- ])
- self.out = Conv(inter_dim*4, out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- x3 = self.cv3(x2)
- x4 = self.cv4(x3)
- out = self.out(torch.cat([x1, x2, x3, x4], dim=1))
- return out
- ## PaFPN's ELAN-Block proposed by YOLOv7
- class ELANBlockFPN(nn.Module):
- def __init__(self, in_dim, out_dim, expand_ratio=0.5, nbranch=4, depth=1, act_type='silu', norm_type='BN', depthwise=False):
- super(ELANBlockFPN, self).__init__()
- # Basic parameters
- inter_dim = int(in_dim * expand_ratio)
- inter_dim2 = int(inter_dim * expand_ratio)
- # Network structure
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv3 = nn.ModuleList()
- for idx in range(round(nbranch)):
- if idx == 0:
- cvs = [Conv(inter_dim, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- else:
- cvs = [Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise)]
- # deeper
- if round(depth) > 1:
- for _ in range(1, round(depth)):
- cvs.append(Conv(inter_dim2, inter_dim2, k=3, p=1, act_type=act_type, norm_type=norm_type, depthwise=depthwise))
- self.cv3.append(nn.Sequential(*cvs))
- else:
- self.cv3.append(cvs[0])
- self.out = Conv(inter_dim*2+inter_dim2*len(self.cv3), out_dim, k=1, act_type=act_type, norm_type=norm_type)
- def forward(self, x):
- x1 = self.cv1(x)
- x2 = self.cv2(x)
- inter_outs = [x1, x2]
- for m in self.cv3:
- y1 = inter_outs[-1]
- y2 = m(y1)
- inter_outs.append(y2)
- out = self.out(torch.cat(inter_outs, dim=1))
- return out
- ## DownSample Block proposed by YOLOv7
- class DownSample(nn.Module):
- def __init__(self, in_dim, out_dim, act_type='silu', norm_type='BN', depthwise=False):
- super().__init__()
- inter_dim = out_dim // 2
- self.mp = nn.MaxPool2d((2, 2), 2)
- self.cv1 = Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type)
- self.cv2 = nn.Sequential(
- Conv(in_dim, inter_dim, k=1, act_type=act_type, norm_type=norm_type),
- Conv(inter_dim, inter_dim, k=3, p=1, s=2, act_type=act_type, norm_type=norm_type, depthwise=depthwise)
- )
- def forward(self, x):
- x1 = self.cv1(self.mp(x))
- x2 = self.cv2(x)
- out = torch.cat([x1, x2], dim=1)
- return out
- # ---------------------------- RepConv Modules ----------------------------
- class RepConv(nn.Module):
- """
- The code referenced to https://github.com/WongKinYiu/yolov7/models/common.py
- """
- # Represented convolution
- # https://arxiv.org/abs/2101.03697
- def __init__(self, c1, c2, k=3, s=1, p=1, g=1, act_type='silu', deploy=False):
- super(RepConv, self).__init__()
- # -------------- Basic parameters --------------
- self.deploy = deploy
- self.groups = g
- self.in_channels = c1
- self.out_channels = c2
- # -------------- Network parameters --------------
- if deploy:
- self.rbr_reparam = nn.Conv2d(c1, c2, k, s, p, groups=g, bias=True)
- else:
- self.rbr_identity = (nn.BatchNorm2d(num_features=c1) if c2 == c1 and s == 1 else None)
- self.rbr_dense = nn.Sequential(
- nn.Conv2d(c1, c2, k, s, p, groups=g, bias=False),
- nn.BatchNorm2d(num_features=c2),
- )
- self.rbr_1x1 = nn.Sequential(
- nn.Conv2d(c1, c2, kernel_size=1, stride=s, bias=False),
- nn.BatchNorm2d(num_features=c2),
- )
- self.act = get_activation(act_type)
- def forward(self, inputs):
- if hasattr(self, "rbr_reparam"):
- return self.act(self.rbr_reparam(inputs))
- if self.rbr_identity is None:
- id_out = 0
- else:
- id_out = self.rbr_identity(inputs)
- return self.act(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)
-
- def get_equivalent_kernel_bias(self):
- kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
- kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
- kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
- return (
- kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid,
- bias3x3 + bias1x1 + biasid,
- )
- def _pad_1x1_to_3x3_tensor(self, kernel1x1):
- if kernel1x1 is None:
- return 0
- else:
- return nn.functional.pad(kernel1x1, [1, 1, 1, 1])
- def _fuse_bn_tensor(self, branch):
- if branch is None:
- return 0, 0
- if isinstance(branch, nn.Sequential):
- kernel = branch[0].weight
- running_mean = branch[1].running_mean
- running_var = branch[1].running_var
- gamma = branch[1].weight
- beta = branch[1].bias
- eps = branch[1].eps
- else:
- assert isinstance(branch, nn.BatchNorm2d)
- if not hasattr(self, "id_tensor"):
- input_dim = self.in_channels // self.groups
- kernel_value = np.zeros(
- (self.in_channels, input_dim, 3, 3), dtype=np.float32
- )
- for i in range(self.in_channels):
- kernel_value[i, i % input_dim, 1, 1] = 1
- self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
- kernel = self.id_tensor
- running_mean = branch.running_mean
- running_var = branch.running_var
- gamma = branch.weight
- beta = branch.bias
- eps = branch.eps
- std = (running_var + eps).sqrt()
- t = (gamma / std).reshape(-1, 1, 1, 1)
- return kernel * t, beta - running_mean * gamma / std
- def repvgg_convert(self):
- kernel, bias = self.get_equivalent_kernel_bias()
- return (
- kernel.detach().cpu().numpy(),
- bias.detach().cpu().numpy(),
- )
- def fuse_conv_bn(self, conv, bn):
- std = (bn.running_var + bn.eps).sqrt()
- bias = bn.bias - bn.running_mean * bn.weight / std
- t = (bn.weight / std).reshape(-1, 1, 1, 1)
- weights = conv.weight * t
- bn = nn.Identity()
- conv = nn.Conv2d(in_channels = conv.in_channels,
- out_channels = conv.out_channels,
- kernel_size = conv.kernel_size,
- stride=conv.stride,
- padding = conv.padding,
- dilation = conv.dilation,
- groups = conv.groups,
- bias = True,
- padding_mode = conv.padding_mode)
- conv.weight = torch.nn.Parameter(weights)
- conv.bias = torch.nn.Parameter(bias)
- return conv
- def fuse_repvgg_block(self):
- if self.deploy:
- return
-
- self.rbr_dense = self.fuse_conv_bn(self.rbr_dense[0], self.rbr_dense[1])
-
- self.rbr_1x1 = self.fuse_conv_bn(self.rbr_1x1[0], self.rbr_1x1[1])
- rbr_1x1_bias = self.rbr_1x1.bias
- weight_1x1_expanded = torch.nn.functional.pad(self.rbr_1x1.weight, [1, 1, 1, 1])
-
- # Fuse self.rbr_identity
- if (isinstance(self.rbr_identity, nn.BatchNorm2d) or isinstance(self.rbr_identity, nn.modules.batchnorm.SyncBatchNorm)):
- identity_conv_1x1 = nn.Conv2d(
- in_channels=self.in_channels,
- out_channels=self.out_channels,
- kernel_size=1,
- stride=1,
- padding=0,
- groups=self.groups,
- bias=False)
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.to(self.rbr_1x1.weight.data.device)
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.squeeze().squeeze()
- identity_conv_1x1.weight.data.fill_(0.0)
- identity_conv_1x1.weight.data.fill_diagonal_(1.0)
- identity_conv_1x1.weight.data = identity_conv_1x1.weight.data.unsqueeze(2).unsqueeze(3)
- identity_conv_1x1 = self.fuse_conv_bn(identity_conv_1x1, self.rbr_identity)
- bias_identity_expanded = identity_conv_1x1.bias
- weight_identity_expanded = torch.nn.functional.pad(identity_conv_1x1.weight, [1, 1, 1, 1])
- else:
- bias_identity_expanded = torch.nn.Parameter( torch.zeros_like(rbr_1x1_bias) )
- weight_identity_expanded = torch.nn.Parameter( torch.zeros_like(weight_1x1_expanded) )
-
- self.rbr_dense.weight = torch.nn.Parameter(self.rbr_dense.weight + weight_1x1_expanded + weight_identity_expanded)
- self.rbr_dense.bias = torch.nn.Parameter(self.rbr_dense.bias + rbr_1x1_bias + bias_identity_expanded)
-
- self.rbr_reparam = self.rbr_dense
- self.deploy = True
- if self.rbr_identity is not None:
- del self.rbr_identity
- self.rbr_identity = None
- if self.rbr_1x1 is not None:
- del self.rbr_1x1
- self.rbr_1x1 = None
- if self.rbr_dense is not None:
- del self.rbr_dense
- self.rbr_dense = None
|