| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- # ---------------------------------------------------------------------
- # Copyright (c) Megvii Inc. All rights reserved.
- # ---------------------------------------------------------------------
- import torch
- import torch.nn.functional as F
- from utils.box_ops import *
- # YOLOX SimOTA
- class SimOTA(object):
- """
- This code referenced to https://github.com/Megvii-BaseDetection/YOLOX/blob/main/yolox/models/yolo_head.py
- """
- def __init__(self, num_classes, center_sampling_radius, topk_candidate ):
- self.num_classes = num_classes
- self.center_sampling_radius = center_sampling_radius
- self.topk_candidate = topk_candidate
- @torch.no_grad()
- def __call__(self,
- fpn_strides,
- anchors,
- pred_obj,
- pred_cls,
- pred_box,
- tgt_labels,
- tgt_bboxes):
- # [M,]
- strides = torch.cat([torch.ones_like(anchor_i[:, 0]) * stride_i
- for stride_i, anchor_i in zip(fpn_strides, anchors)], dim=-1)
- # List[F, M, 2] -> [M, 2]
- anchors = torch.cat(anchors, dim=0)
- num_anchor = anchors.shape[0]
- num_gt = len(tgt_labels)
- fg_mask, is_in_boxes_and_center = \
- self.get_in_boxes_info(
- tgt_bboxes,
- anchors,
- strides,
- num_anchor,
- num_gt
- )
- obj_preds_ = pred_obj[fg_mask] # [Mp, 1]
- cls_preds_ = pred_cls[fg_mask] # [Mp, C]
- box_preds_ = pred_box[fg_mask] # [Mp, 4]
- num_in_boxes_anchor = box_preds_.shape[0]
- # [N, Mp]
- pair_wise_ious, _ = box_iou(tgt_bboxes, box_preds_)
- pair_wise_ious_loss = -torch.log(pair_wise_ious + 1e-8)
- # [N, C] -> [N, Mp, C]
- gt_cls = (
- F.one_hot(tgt_labels.long(), self.num_classes)
- .float()
- .unsqueeze(1)
- .repeat(1, num_in_boxes_anchor, 1)
- )
- with torch.cuda.amp.autocast(enabled=False):
- score_preds_ = torch.sqrt(
- cls_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- * obj_preds_.float().unsqueeze(0).repeat(num_gt, 1, 1).sigmoid_()
- ) # [N, Mp, C]
- pair_wise_cls_loss = F.binary_cross_entropy(
- score_preds_, gt_cls, reduction="none"
- ).sum(-1) # [N, Mp]
- del score_preds_
- cost = (
- pair_wise_cls_loss
- + 3.0 * pair_wise_ious_loss
- + 100000.0 * (~is_in_boxes_and_center)
- ) # [N, Mp]
- (
- num_fg,
- gt_matched_classes, # [num_fg,]
- pred_ious_this_matching, # [num_fg,]
- matched_gt_inds, # [num_fg,]
- ) = self.dynamic_k_matching(
- cost,
- pair_wise_ious,
- tgt_labels,
- num_gt,
- fg_mask
- )
- del pair_wise_cls_loss, cost, pair_wise_ious, pair_wise_ious_loss
- return (
- gt_matched_classes,
- fg_mask,
- pred_ious_this_matching,
- matched_gt_inds,
- num_fg,
- )
- def get_in_boxes_info(
- self,
- gt_bboxes, # [N, 4]
- anchors, # [M, 2]
- strides, # [M,]
- num_anchors, # M
- num_gt, # N
- ):
- # anchor center
- x_centers = anchors[:, 0]
- y_centers = anchors[:, 1]
- # [M,] -> [1, M] -> [N, M]
- x_centers = x_centers.unsqueeze(0).repeat(num_gt, 1)
- y_centers = y_centers.unsqueeze(0).repeat(num_gt, 1)
- # [N,] -> [N, 1] -> [N, M]
- gt_bboxes_l = gt_bboxes[:, 0].unsqueeze(1).repeat(1, num_anchors) # x1
- gt_bboxes_t = gt_bboxes[:, 1].unsqueeze(1).repeat(1, num_anchors) # y1
- gt_bboxes_r = gt_bboxes[:, 2].unsqueeze(1).repeat(1, num_anchors) # x2
- gt_bboxes_b = gt_bboxes[:, 3].unsqueeze(1).repeat(1, num_anchors) # y2
- b_l = x_centers - gt_bboxes_l
- b_r = gt_bboxes_r - x_centers
- b_t = y_centers - gt_bboxes_t
- b_b = gt_bboxes_b - y_centers
- bbox_deltas = torch.stack([b_l, b_t, b_r, b_b], 2)
- is_in_boxes = bbox_deltas.min(dim=-1).values > 0.0
- is_in_boxes_all = is_in_boxes.sum(dim=0) > 0
- # in fixed center
- center_radius = self.center_sampling_radius
- # [N, 2]
- gt_centers = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) * 0.5
-
- # [1, M]
- center_radius_ = center_radius * strides.unsqueeze(0)
- gt_bboxes_l = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # x1
- gt_bboxes_t = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) - center_radius_ # y1
- gt_bboxes_r = gt_centers[:, 0].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # x2
- gt_bboxes_b = gt_centers[:, 1].unsqueeze(1).repeat(1, num_anchors) + center_radius_ # y2
- c_l = x_centers - gt_bboxes_l
- c_r = gt_bboxes_r - x_centers
- c_t = y_centers - gt_bboxes_t
- c_b = gt_bboxes_b - y_centers
- center_deltas = torch.stack([c_l, c_t, c_r, c_b], 2)
- is_in_centers = center_deltas.min(dim=-1).values > 0.0
- is_in_centers_all = is_in_centers.sum(dim=0) > 0
- # in boxes and in centers
- is_in_boxes_anchor = is_in_boxes_all | is_in_centers_all
- is_in_boxes_and_center = (
- is_in_boxes[:, is_in_boxes_anchor] & is_in_centers[:, is_in_boxes_anchor]
- )
- return is_in_boxes_anchor, is_in_boxes_and_center
-
-
- def dynamic_k_matching(
- self,
- cost,
- pair_wise_ious,
- gt_classes,
- num_gt,
- fg_mask
- ):
- # Dynamic K
- # ---------------------------------------------------------------
- matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
- ious_in_boxes_matrix = pair_wise_ious
- n_candidate_k = min(self.topk_candidate, ious_in_boxes_matrix.size(1))
- topk_ious, _ = torch.topk(ious_in_boxes_matrix, n_candidate_k, dim=1)
- dynamic_ks = torch.clamp(topk_ious.sum(1).int(), min=1)
- dynamic_ks = dynamic_ks.tolist()
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[gt_idx], k=dynamic_ks[gt_idx], largest=False
- )
- matching_matrix[gt_idx][pos_idx] = 1
- del topk_ious, dynamic_ks, pos_idx
- anchor_matching_gt = matching_matrix.sum(0)
- if (anchor_matching_gt > 1).sum() > 0:
- _, cost_argmin = torch.min(cost[:, anchor_matching_gt > 1], dim=0)
- matching_matrix[:, anchor_matching_gt > 1] *= 0
- matching_matrix[cost_argmin, anchor_matching_gt > 1] = 1
- fg_mask_inboxes = matching_matrix.sum(0) > 0
- num_fg = fg_mask_inboxes.sum().item()
- fg_mask[fg_mask.clone()] = fg_mask_inboxes
- matched_gt_inds = matching_matrix[:, fg_mask_inboxes].argmax(0)
- gt_matched_classes = gt_classes[matched_gt_inds]
- pred_ious_this_matching = (matching_matrix * pair_wise_ious).sum(0)[
- fg_mask_inboxes
- ]
- return num_fg, gt_matched_classes, pred_ious_this_matching, matched_gt_inds
-
|