| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- import torch
- import torch.nn as nn
- try:
- from .yolov3_basic import Conv
- except:
- from yolov3_basic import Conv
- class DecoupledHead(nn.Module):
- def __init__(self, cfg, in_dim, out_dim, num_classes=80):
- super().__init__()
- print('==============================')
- print('Head: Decoupled Head')
- self.in_dim = in_dim
- self.num_cls_head=cfg['num_cls_head']
- self.num_reg_head=cfg['num_reg_head']
- self.act_type=cfg['head_act']
- self.norm_type=cfg['head_norm']
- # cls head
- cls_feats = []
- self.cls_out_dim = max(out_dim, num_classes)
- for i in range(cfg['num_cls_head']):
- if i == 0:
- cls_feats.append(
- Conv(in_dim, self.cls_out_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type,
- depthwise=cfg['head_depthwise'])
- )
- else:
- cls_feats.append(
- Conv(self.cls_out_dim, self.cls_out_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type,
- depthwise=cfg['head_depthwise'])
- )
-
- # reg head
- reg_feats = []
- self.reg_out_dim = max(out_dim, 64)
- for i in range(cfg['num_reg_head']):
- if i == 0:
- reg_feats.append(
- Conv(in_dim, self.reg_out_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type,
- depthwise=cfg['head_depthwise'])
- )
- else:
- reg_feats.append(
- Conv(self.reg_out_dim, self.reg_out_dim, k=3, p=1, s=1,
- act_type=self.act_type,
- norm_type=self.norm_type,
- depthwise=cfg['head_depthwise'])
- )
- self.cls_feats = nn.Sequential(*cls_feats)
- self.reg_feats = nn.Sequential(*reg_feats)
- def forward(self, x):
- """
- in_feats: (Tensor) [B, C, H, W]
- """
- cls_feats = self.cls_feats(x)
- reg_feats = self.reg_feats(x)
- return cls_feats, reg_feats
-
- # build detection head
- def build_head(cfg, in_dim, out_dim, num_classes=80):
- head = DecoupledHead(cfg, in_dim, out_dim, num_classes)
- return head
- if __name__ == '__main__':
- import time
- from thop import profile
- cfg = {
- 'num_cls_head': 2,
- 'num_reg_head': 2,
- 'head_act': 'silu',
- 'head_norm': 'BN',
- 'head_depthwise': False,
- 'reg_max': 16,
- }
- fpn_dims = [256, 512, 512]
- # Head-1
- model = build_head(cfg, 256, fpn_dims, num_classes=80)
- x = torch.randn(1, 256, 80, 80)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- # for out in outputs:
- # print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('Head-1: GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Head-1: Params : {:.2f} M'.format(params / 1e6))
- # Head-2
- model = build_head(cfg, 512, fpn_dims, num_classes=80)
- x = torch.randn(1, 512, 40, 40)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- # for out in outputs:
- # print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('Head-2: GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Head-2: Params : {:.2f} M'.format(params / 1e6))
- # Head-3
- model = build_head(cfg, 512, fpn_dims, num_classes=80)
- x = torch.randn(1, 512, 20, 20)
- t0 = time.time()
- outputs = model(x)
- t1 = time.time()
- print('Time: ', t1 - t0)
- # for out in outputs:
- # print(out.shape)
- print('==============================')
- flops, params = profile(model, inputs=(x, ), verbose=False)
- print('==============================')
- print('Head-3: GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Head-3: Params : {:.2f} M'.format(params / 1e6))
|