yolov3.py 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264
  1. import torch
  2. import torch.nn as nn
  3. from utils.misc import multiclass_nms
  4. from .yolov3_backbone import build_backbone
  5. from .yolov3_neck import build_neck
  6. from .yolov3_fpn import build_fpn
  7. from .yolov3_head import build_head
  8. # YOLOv3
  9. class YOLOv3(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. topk=100,
  16. nms_thresh=0.5,
  17. trainable=False):
  18. super(YOLOv3, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = [8, 16, 32] # 网络的输出步长
  28. # ------------------- Anchor box -------------------
  29. self.num_levels = 3
  30. self.num_anchors = len(cfg['anchor_size']) // self.num_levels
  31. self.anchor_size = torch.as_tensor(
  32. cfg['anchor_size']
  33. ).view(self.num_levels, self.num_anchors, 2) # [S, A, 2]
  34. # ------------------- Network Structure -------------------
  35. ## 主干网络
  36. self.backbone, feats_dim = build_backbone(
  37. cfg['backbone'], trainable&cfg['pretrained'])
  38. ## 颈部网络: SPP模块
  39. self.neck = build_neck(cfg, in_dim=feats_dim[-1], out_dim=feats_dim[-1])
  40. feats_dim[-1] = self.neck.out_dim
  41. ## 颈部网络: 特征金字塔
  42. self.fpn = build_fpn(cfg=cfg, in_dims=feats_dim, out_dim=int(256*cfg['width']))
  43. self.head_dim = self.fpn.out_dim
  44. ## 检测头
  45. self.non_shared_heads = nn.ModuleList(
  46. [build_head(cfg, head_dim, head_dim, num_classes)
  47. for head_dim in self.head_dim
  48. ])
  49. ## 预测层
  50. self.obj_preds = nn.ModuleList(
  51. [nn.Conv2d(head.reg_out_dim, 1 * self.num_anchors, kernel_size=1)
  52. for head in self.non_shared_heads
  53. ])
  54. self.cls_preds = nn.ModuleList(
  55. [nn.Conv2d(head.cls_out_dim, self.num_classes * self.num_anchors, kernel_size=1)
  56. for head in self.non_shared_heads
  57. ])
  58. self.reg_preds = nn.ModuleList(
  59. [nn.Conv2d(head.reg_out_dim, 4 * self.num_anchors, kernel_size=1)
  60. for head in self.non_shared_heads
  61. ])
  62. # ---------------------- Basic Functions ----------------------
  63. ## generate anchor points
  64. def generate_anchors(self, level, fmp_size):
  65. """
  66. fmp_size: (List) [H, W]
  67. """
  68. fmp_h, fmp_w = fmp_size
  69. # [KA, 2]
  70. anchor_size = self.anchor_size[level]
  71. # generate grid cells
  72. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  73. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  74. # [HW, 2] -> [HW, KA, 2] -> [M, 2]
  75. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  76. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  77. # [KA, 2] -> [1, KA, 2] -> [HW, KA, 2] -> [M, 2]
  78. anchor_wh = anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  79. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  80. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  81. return anchors
  82. ## post-process
  83. def post_process(self, obj_preds, cls_preds, box_preds):
  84. """
  85. Input:
  86. obj_preds: List(Tensor) [[H x W x A, 1], ...]
  87. cls_preds: List(Tensor) [[H x W x A, C], ...]
  88. box_preds: List(Tensor) [[H x W x A, 4], ...]
  89. anchors: List(Tensor) [[H x W x A, 2], ...]
  90. """
  91. all_scores = []
  92. all_labels = []
  93. all_bboxes = []
  94. for obj_pred_i, cls_pred_i, box_pred_i in zip(obj_preds, cls_preds, box_preds):
  95. # (H x W x KA x C,)
  96. scores_i = (torch.sqrt(obj_pred_i.sigmoid() * cls_pred_i.sigmoid())).flatten()
  97. # Keep top k top scoring indices only.
  98. num_topk = min(self.topk, box_pred_i.size(0))
  99. # torch.sort is actually faster than .topk (at least on GPUs)
  100. predicted_prob, topk_idxs = scores_i.sort(descending=True)
  101. topk_scores = predicted_prob[:num_topk]
  102. topk_idxs = topk_idxs[:num_topk]
  103. # filter out the proposals with low confidence score
  104. keep_idxs = topk_scores > self.conf_thresh
  105. scores = topk_scores[keep_idxs]
  106. topk_idxs = topk_idxs[keep_idxs]
  107. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  108. labels = topk_idxs % self.num_classes
  109. bboxes = box_pred_i[anchor_idxs]
  110. all_scores.append(scores)
  111. all_labels.append(labels)
  112. all_bboxes.append(bboxes)
  113. scores = torch.cat(all_scores)
  114. labels = torch.cat(all_labels)
  115. bboxes = torch.cat(all_bboxes)
  116. # to cpu & numpy
  117. scores = scores.cpu().numpy()
  118. labels = labels.cpu().numpy()
  119. bboxes = bboxes.cpu().numpy()
  120. # nms
  121. scores, labels, bboxes = multiclass_nms(
  122. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  123. return bboxes, scores, labels
  124. # ---------------------- Main Process for Inference ----------------------
  125. @torch.no_grad()
  126. def inference(self, x):
  127. # 主干网络
  128. pyramid_feats = self.backbone(x)
  129. # 颈部网络
  130. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  131. # 特征金字塔
  132. pyramid_feats = self.fpn(pyramid_feats)
  133. # 检测头
  134. all_anchors = []
  135. all_obj_preds = []
  136. all_cls_preds = []
  137. all_box_preds = []
  138. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  139. cls_feat, reg_feat = head(feat)
  140. # [1, C, H, W]
  141. obj_pred = self.obj_preds[level](reg_feat)
  142. cls_pred = self.cls_preds[level](cls_feat)
  143. reg_pred = self.reg_preds[level](reg_feat)
  144. # anchors: [M, 2]
  145. fmp_size = cls_pred.shape[-2:]
  146. anchors = self.generate_anchors(level, fmp_size)
  147. # [1, AC, H, W] -> [H, W, AC] -> [M, C]
  148. obj_pred = obj_pred[0].permute(1, 2, 0).contiguous().view(-1, 1)
  149. cls_pred = cls_pred[0].permute(1, 2, 0).contiguous().view(-1, self.num_classes)
  150. reg_pred = reg_pred[0].permute(1, 2, 0).contiguous().view(-1, 4)
  151. # decode bbox
  152. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  153. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  154. pred_x1y1 = ctr_pred - wh_pred * 0.5
  155. pred_x2y2 = ctr_pred + wh_pred * 0.5
  156. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  157. all_obj_preds.append(obj_pred)
  158. all_cls_preds.append(cls_pred)
  159. all_box_preds.append(box_pred)
  160. all_anchors.append(anchors)
  161. # post process
  162. bboxes, scores, labels = self.post_process(
  163. all_obj_preds, all_cls_preds, all_box_preds)
  164. return bboxes, scores, labels
  165. def forward(self, x):
  166. if not self.trainable:
  167. return self.inference(x)
  168. else:
  169. bs = x.shape[0]
  170. # 主干网络
  171. pyramid_feats = self.backbone(x)
  172. # 颈部网络
  173. pyramid_feats[-1] = self.neck(pyramid_feats[-1])
  174. # 特征金字塔
  175. pyramid_feats = self.fpn(pyramid_feats)
  176. # 检测头
  177. all_fmp_sizes = []
  178. all_obj_preds = []
  179. all_cls_preds = []
  180. all_box_preds = []
  181. for level, (feat, head) in enumerate(zip(pyramid_feats, self.non_shared_heads)):
  182. cls_feat, reg_feat = head(feat)
  183. # [B, C, H, W]
  184. obj_pred = self.obj_preds[level](reg_feat)
  185. cls_pred = self.cls_preds[level](cls_feat)
  186. reg_pred = self.reg_preds[level](reg_feat)
  187. fmp_size = cls_pred.shape[-2:]
  188. # generate anchor boxes: [M, 4]
  189. anchors = self.generate_anchors(level, fmp_size)
  190. # [B, AC, H, W] -> [B, H, W, AC] -> [B, M, C]
  191. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  192. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  193. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  194. # decode bbox
  195. ctr_pred = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride[level]
  196. wh_pred = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  197. pred_x1y1 = ctr_pred - wh_pred * 0.5
  198. pred_x2y2 = ctr_pred + wh_pred * 0.5
  199. box_pred = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  200. all_obj_preds.append(obj_pred)
  201. all_cls_preds.append(cls_pred)
  202. all_box_preds.append(box_pred)
  203. all_fmp_sizes.append(fmp_size)
  204. # output dict
  205. outputs = {"pred_obj": all_obj_preds, # List [B, M, 1]
  206. "pred_cls": all_cls_preds, # List [B, M, C]
  207. "pred_box": all_box_preds, # List [B, M, 4]
  208. 'fmp_sizes': all_fmp_sizes, # List
  209. 'strides': self.stride, # List
  210. }
  211. return outputs