yolov2.py 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. import torch
  2. import torch.nn as nn
  3. import numpy as np
  4. from utils.misc import multiclass_nms
  5. from .yolov2_backbone import build_backbone
  6. from .yolov2_neck import build_neck
  7. from .yolov2_head import build_head
  8. # YOLOv2
  9. class YOLOv2(nn.Module):
  10. def __init__(self,
  11. cfg,
  12. device,
  13. num_classes=20,
  14. conf_thresh=0.01,
  15. nms_thresh=0.5,
  16. topk=100,
  17. trainable=False):
  18. super(YOLOv2, self).__init__()
  19. # ------------------- Basic parameters -------------------
  20. self.cfg = cfg # 模型配置文件
  21. self.device = device # cuda或者是cpu
  22. self.num_classes = num_classes # 类别的数量
  23. self.trainable = trainable # 训练的标记
  24. self.conf_thresh = conf_thresh # 得分阈值
  25. self.nms_thresh = nms_thresh # NMS阈值
  26. self.topk = topk # topk
  27. self.stride = 32 # 网络的最大步长
  28. # ------------------- Anchor box -------------------
  29. self.anchor_size = torch.as_tensor(cfg['anchor_size']).view(-1, 2) # [A, 2]
  30. self.num_anchors = self.anchor_size.shape[0]
  31. # ------------------- Network Structure -------------------
  32. ## 主干网络
  33. self.backbone, feat_dim = build_backbone(
  34. cfg['backbone'], trainable&cfg['pretrained'])
  35. ## 颈部网络
  36. self.neck = build_neck(cfg, feat_dim, out_dim=512)
  37. head_dim = self.neck.out_dim
  38. ## 检测头
  39. self.head = build_head(cfg, head_dim, head_dim, num_classes)
  40. ## 预测层
  41. self.obj_pred = nn.Conv2d(head_dim, 1*self.num_anchors, kernel_size=1)
  42. self.cls_pred = nn.Conv2d(head_dim, num_classes*self.num_anchors, kernel_size=1)
  43. self.reg_pred = nn.Conv2d(head_dim, 4*self.num_anchors, kernel_size=1)
  44. if self.trainable:
  45. self.init_bias()
  46. def init_bias(self):
  47. # init bias
  48. init_prob = 0.01
  49. bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
  50. nn.init.constant_(self.obj_pred.bias, bias_value)
  51. nn.init.constant_(self.cls_pred.bias, bias_value)
  52. def generate_anchors(self, fmp_size):
  53. """
  54. fmp_size: (List) [H, W]
  55. """
  56. fmp_h, fmp_w = fmp_size
  57. # generate grid cells
  58. anchor_y, anchor_x = torch.meshgrid([torch.arange(fmp_h), torch.arange(fmp_w)])
  59. anchor_xy = torch.stack([anchor_x, anchor_y], dim=-1).float().view(-1, 2)
  60. # [HW, 2] -> [HW, A, 2] -> [M, 2]
  61. anchor_xy = anchor_xy.unsqueeze(1).repeat(1, self.num_anchors, 1)
  62. anchor_xy = anchor_xy.view(-1, 2).to(self.device)
  63. # [A, 2] -> [1, A, 2] -> [HW, A, 2] -> [M, 2]
  64. anchor_wh = self.anchor_size.unsqueeze(0).repeat(fmp_h*fmp_w, 1, 1)
  65. anchor_wh = anchor_wh.view(-1, 2).to(self.device)
  66. anchors = torch.cat([anchor_xy, anchor_wh], dim=-1)
  67. return anchors
  68. def decode_boxes(self, anchors, reg_pred):
  69. """
  70. 将txtytwth转换为常用的x1y1x2y2形式。
  71. """
  72. # 计算预测边界框的中心点坐标和宽高
  73. pred_ctr = (torch.sigmoid(reg_pred[..., :2]) + anchors[..., :2]) * self.stride
  74. pred_wh = torch.exp(reg_pred[..., 2:]) * anchors[..., 2:]
  75. # 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式
  76. pred_x1y1 = pred_ctr - pred_wh * 0.5
  77. pred_x2y2 = pred_ctr + pred_wh * 0.5
  78. pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)
  79. return pred_box
  80. def postprocess(self, obj_pred, cls_pred, reg_pred, anchors):
  81. """
  82. Input:
  83. obj_pred: (Tensor) [H*W*A, 1]
  84. cls_pred: (Tensor) [H*W*A, C]
  85. reg_pred: (Tensor) [H*W*A, 4]
  86. """
  87. # (H x W x A x C,)
  88. scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid()).flatten()
  89. # Keep top k top scoring indices only.
  90. num_topk = min(self.topk, reg_pred.size(0))
  91. # torch.sort is actually faster than .topk (at least on GPUs)
  92. predicted_prob, topk_idxs = scores.sort(descending=True)
  93. topk_scores = predicted_prob[:num_topk]
  94. topk_idxs = topk_idxs[:num_topk]
  95. # filter out the proposals with low confidence score
  96. keep_idxs = topk_scores > self.conf_thresh
  97. scores = topk_scores[keep_idxs]
  98. topk_idxs = topk_idxs[keep_idxs]
  99. anchor_idxs = torch.div(topk_idxs, self.num_classes, rounding_mode='floor')
  100. labels = topk_idxs % self.num_classes
  101. reg_pred = reg_pred[anchor_idxs]
  102. anchors = anchors[anchor_idxs]
  103. # 解算边界框, 并归一化边界框: [H*W*A, 4]
  104. bboxes = self.decode_boxes(anchors, reg_pred)
  105. # to cpu & numpy
  106. scores = scores.cpu().numpy()
  107. labels = labels.cpu().numpy()
  108. bboxes = bboxes.cpu().numpy()
  109. # nms
  110. scores, labels, bboxes = multiclass_nms(
  111. scores, labels, bboxes, self.nms_thresh, self.num_classes, False)
  112. return bboxes, scores, labels
  113. @torch.no_grad()
  114. def inference(self, x):
  115. bs = x.shape[0]
  116. # 主干网络
  117. feat = self.backbone(x)
  118. # 颈部网络
  119. feat = self.neck(feat)
  120. # 检测头
  121. cls_feat, reg_feat = self.head(feat)
  122. # 预测层
  123. obj_pred = self.obj_pred(reg_feat)
  124. cls_pred = self.cls_pred(cls_feat)
  125. reg_pred = self.reg_pred(reg_feat)
  126. fmp_size = obj_pred.shape[-2:]
  127. # anchors: [M, 2]
  128. anchors = self.generate_anchors(fmp_size)
  129. # 对 pred 的size做一些view调整,便于后续的处理
  130. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  131. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  132. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  133. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  134. # 测试时,笔者默认batch是1,
  135. # 因此,我们不需要用batch这个维度,用[0]将其取走。
  136. obj_pred = obj_pred[0] # [H*W*A, 1]
  137. cls_pred = cls_pred[0] # [H*W*A, NC]
  138. reg_pred = reg_pred[0] # [H*W*A, 4]
  139. # post process
  140. bboxes, scores, labels = self.postprocess(
  141. obj_pred, cls_pred, reg_pred, anchors)
  142. return bboxes, scores, labels
  143. def forward(self, x):
  144. if not self.trainable:
  145. return self.inference(x)
  146. else:
  147. bs = x.shape[0]
  148. # 主干网络
  149. feat = self.backbone(x)
  150. # 颈部网络
  151. feat = self.neck(feat)
  152. # 检测头
  153. cls_feat, reg_feat = self.head(feat)
  154. # 预测层
  155. obj_pred = self.obj_pred(reg_feat)
  156. cls_pred = self.cls_pred(cls_feat)
  157. reg_pred = self.reg_pred(reg_feat)
  158. fmp_size = obj_pred.shape[-2:]
  159. # anchors: [M, 2]
  160. anchors = self.generate_anchors(fmp_size)
  161. # 对 pred 的size做一些view调整,便于后续的处理
  162. # [B, A*C, H, W] -> [B, H, W, A*C] -> [B, H*W*A, C]
  163. obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 1)
  164. cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, self.num_classes)
  165. reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().view(bs, -1, 4)
  166. # decode bbox
  167. box_pred = self.decode_boxes(anchors, reg_pred)
  168. # 网络输出
  169. outputs = {"pred_obj": obj_pred, # (Tensor) [B, M, 1]
  170. "pred_cls": cls_pred, # (Tensor) [B, M, C]
  171. "pred_box": box_pred, # (Tensor) [B, M, 4]
  172. "stride": self.stride, # (Int)
  173. "fmp_size": fmp_size # (List) [fmp_h, fmp_w]
  174. }
  175. return outputs