yolov1_basic.py 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. import torch
  2. import torch.nn as nn
  3. class SiLU(nn.Module):
  4. """export-friendly version of nn.SiLU()"""
  5. @staticmethod
  6. def forward(x):
  7. return x * torch.sigmoid(x)
  8. def get_conv2d(c1, c2, k, p, s, d, g, bias=False):
  9. conv = nn.Conv2d(c1, c2, k, stride=s, padding=p, dilation=d, groups=g, bias=bias)
  10. return conv
  11. def get_activation(act_type=None):
  12. if act_type == 'relu':
  13. return nn.ReLU(inplace=True)
  14. elif act_type == 'lrelu':
  15. return nn.LeakyReLU(0.1, inplace=True)
  16. elif act_type == 'mish':
  17. return nn.Mish(inplace=True)
  18. elif act_type == 'silu':
  19. return nn.SiLU(inplace=True)
  20. def get_norm(norm_type, dim):
  21. if norm_type == 'BN':
  22. return nn.BatchNorm2d(dim)
  23. elif norm_type == 'GN':
  24. return nn.GroupNorm(num_groups=32, num_channels=dim)
  25. # Basic conv layer
  26. class Conv(nn.Module):
  27. def __init__(self,
  28. c1, # in channels
  29. c2, # out channels
  30. k=1, # kernel size
  31. p=0, # padding
  32. s=1, # padding
  33. d=1, # dilation
  34. act_type='lrelu', # activation
  35. norm_type='BN', # normalization
  36. depthwise=False):
  37. super(Conv, self).__init__()
  38. convs = []
  39. add_bias = False if norm_type else True
  40. if depthwise:
  41. convs.append(get_conv2d(c1, c1, k=k, p=p, s=s, d=d, g=c1, bias=add_bias))
  42. # depthwise conv
  43. if norm_type:
  44. convs.append(get_norm(norm_type, c1))
  45. if act_type:
  46. convs.append(get_activation(act_type))
  47. # pointwise conv
  48. convs.append(get_conv2d(c1, c2, k=1, p=0, s=1, d=d, g=1, bias=add_bias))
  49. if norm_type:
  50. convs.append(get_norm(norm_type, c2))
  51. if act_type:
  52. convs.append(get_activation(act_type))
  53. else:
  54. convs.append(get_conv2d(c1, c2, k=k, p=p, s=s, d=d, g=1, bias=add_bias))
  55. if norm_type:
  56. convs.append(get_norm(norm_type, c2))
  57. if act_type:
  58. convs.append(get_activation(act_type))
  59. self.convs = nn.Sequential(*convs)
  60. def forward(self, x):
  61. return self.convs(x)