| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- #!/usr/bin/env python3
- # -*- coding:utf-8 -*-
- import torch
- import torch.nn as nn
- from .loss import build_criterion
- from .yolov1 import YOLOv1
- # build object detector
- def build_yolov1(args, cfg, device, num_classes=80, trainable=False):
- print('==============================')
- print('Build {} ...'.format(args.model.upper()))
-
- print('==============================')
- print('Model Configuration: \n', cfg)
-
- # -------------- Build YOLO --------------
- model = YOLOv1(
- cfg = cfg,
- device = device,
- img_size = args.img_size,
- num_classes = num_classes,
- conf_thresh = args.conf_thresh,
- nms_thresh = args.nms_thresh,
- trainable = trainable
- )
- # -------------- Initialize YOLO --------------
- # Init bias
- init_prob = 0.01
- bias_value = -torch.log(torch.tensor((1. - init_prob) / init_prob))
- # obj pred
- b = model.obj_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- model.obj_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # cls pred
- b = model.cls_pred.bias.view(1, -1)
- b.data.fill_(bias_value.item())
- model.cls_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- # reg pred
- b = model.reg_pred.bias.view(-1, )
- b.data.fill_(1.0)
- model.reg_pred.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
- w = model.reg_pred.weight
- w.data.fill_(0.)
- model.reg_pred.weight = torch.nn.Parameter(w, requires_grad=True)
- # -------------- Build criterion --------------
- criterion = None
- if trainable:
- # build criterion for training
- criterion = build_criterion(cfg, device, num_classes)
- return model, criterion
|