eval.py 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. import argparse
  2. import os
  3. from copy import deepcopy
  4. import torch
  5. from evaluator.voc_evaluator import VOCAPIEvaluator
  6. from evaluator.coco_evaluator import COCOAPIEvaluator
  7. from evaluator.ourdataset_evaluator import OurDatasetEvaluator
  8. # load transform
  9. from dataset.ourdataset import our_class_labels
  10. from dataset.data_augment import build_transform
  11. # load some utils
  12. from utils.misc import load_weight
  13. from utils.misc import compute_flops
  14. from models.detectors import build_model
  15. from config import build_model_config, build_trans_config
  16. def parse_args():
  17. parser = argparse.ArgumentParser(description='YOLO-Tutorial')
  18. # basic
  19. parser.add_argument('-size', '--img_size', default=640, type=int,
  20. help='the max size of input image')
  21. parser.add_argument('--cuda', action='store_true', default=False,
  22. help='Use cuda')
  23. # model
  24. parser.add_argument('-m', '--model', default='yolov1', type=str,
  25. help='build yolo')
  26. parser.add_argument('--weight', default=None,
  27. type=str, help='Trained state_dict file path to open')
  28. parser.add_argument('-ct', '--conf_thresh', default=0.001, type=float,
  29. help='confidence threshold')
  30. parser.add_argument('-nt', '--nms_thresh', default=0.6, type=float,
  31. help='NMS threshold')
  32. parser.add_argument('--topk', default=1000, type=int,
  33. help='topk candidates for testing')
  34. parser.add_argument("--no_decode", action="store_true", default=False,
  35. help="not decode in inference or yes")
  36. parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
  37. help='fuse Conv & BN')
  38. # dataset
  39. parser.add_argument('--root', default='/mnt/share/ssd2/dataset',
  40. help='data root')
  41. parser.add_argument('-d', '--dataset', default='coco',
  42. help='coco, voc.')
  43. # TTA
  44. parser.add_argument('-tta', '--test_aug', action='store_true', default=False,
  45. help='use test augmentation.')
  46. return parser.parse_args()
  47. def voc_test(model, data_dir, device, transform):
  48. evaluator = VOCAPIEvaluator(data_dir=data_dir,
  49. device=device,
  50. transform=transform,
  51. display=True)
  52. # VOC evaluation
  53. evaluator.evaluate(model)
  54. def coco_test(model, data_dir, device, transform, test=False):
  55. if test:
  56. # test-dev
  57. print('test on test-dev 2017')
  58. evaluator = COCOAPIEvaluator(
  59. data_dir=data_dir,
  60. device=device,
  61. testset=True,
  62. transform=transform)
  63. else:
  64. # eval
  65. evaluator = COCOAPIEvaluator(
  66. data_dir=data_dir,
  67. device=device,
  68. testset=False,
  69. transform=transform)
  70. # COCO evaluation
  71. evaluator.evaluate(model)
  72. def our_test(model, data_dir, device, transform):
  73. evaluator = OurDatasetEvaluator(
  74. data_dir=data_dir,
  75. device=device,
  76. image_set='val',
  77. transform=transform)
  78. # WiderFace evaluation
  79. evaluator.evaluate(model)
  80. if __name__ == '__main__':
  81. args = parse_args()
  82. # cuda
  83. if args.cuda:
  84. print('use cuda')
  85. device = torch.device("cuda")
  86. else:
  87. device = torch.device("cpu")
  88. # dataset
  89. if args.dataset == 'voc':
  90. print('eval on voc ...')
  91. num_classes = 20
  92. data_dir = os.path.join(args.root, 'VOCdevkit')
  93. elif args.dataset == 'coco-val':
  94. print('eval on coco-val ...')
  95. num_classes = 80
  96. data_dir = os.path.join(args.root, 'COCO')
  97. elif args.dataset == 'coco-test':
  98. print('eval on coco-test-dev ...')
  99. num_classes = 80
  100. data_dir = os.path.join(args.root, 'COCO')
  101. elif args.dataset == 'ourdataset':
  102. print('eval on crowdhuman ...')
  103. num_classes = len(our_class_labels)
  104. data_dir = os.path.join(args.root, 'OurDataset')
  105. else:
  106. print('unknow dataset !! we only support voc, coco-val, coco-test !!!')
  107. exit(0)
  108. # config
  109. model_cfg = build_model_config(args)
  110. trans_cfg = build_trans_config(model_cfg['trans_type'])
  111. # build model
  112. model = build_model(args, model_cfg, device, num_classes, False)
  113. # load trained weight
  114. model = load_weight(model, args.weight, args.fuse_conv_bn)
  115. model.to(device).eval()
  116. # compute FLOPs and Params
  117. model_copy = deepcopy(model)
  118. model_copy.trainable = False
  119. model_copy.eval()
  120. compute_flops(
  121. model=model_copy,
  122. img_size=args.img_size,
  123. device=device)
  124. del model_copy
  125. # transform
  126. transform = build_transform(args.img_size, trans_cfg, is_train=False)
  127. # evaluation
  128. with torch.no_grad():
  129. if args.dataset == 'voc':
  130. voc_test(model, data_dir, device, transform)
  131. elif args.dataset == 'coco-val':
  132. coco_test(model, data_dir, device, transform, test=False)
  133. elif args.dataset == 'coco-test':
  134. coco_test(model, data_dir, device, transform, test=True)
  135. elif args.dataset == 'ourdataset':
  136. our_test(model, data_dir, device, transform)