yolov8_config.py 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. # yolov8 config
  2. yolov8_cfg = {
  3. 'yolov8_n':{
  4. # input
  5. 'trans_type': 'yolov5_tiny',
  6. 'multi_scale': [0.5, 1.5], # 320 -> 960
  7. # model
  8. 'backbone': 'elan_cspnet',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'width': 0.25,
  14. 'depth': 0.34,
  15. 'ratio': 2.0,
  16. 'stride': [8, 16, 32], # P3, P4, P5
  17. # neck
  18. 'neck': 'sppf',
  19. 'expand_ratio': 0.5,
  20. 'pooling_size': 5,
  21. 'neck_act': 'silu',
  22. 'neck_norm': 'BN',
  23. 'neck_depthwise': False,
  24. # fpn
  25. 'fpn': 'yolov8_pafpn',
  26. 'fpn_act': 'silu',
  27. 'fpn_norm': 'BN',
  28. 'fpn_depthwise': False,
  29. # head
  30. 'head': 'decoupled_head',
  31. 'head_act': 'silu',
  32. 'head_norm': 'BN',
  33. 'num_cls_head': 2,
  34. 'num_reg_head': 2,
  35. 'head_depthwise': False,
  36. 'reg_max': 16,
  37. # matcher
  38. 'matcher': {'topk': 10,
  39. 'alpha': 0.5,
  40. 'beta': 6.0},
  41. # loss weight
  42. 'cls_loss': 'bce', # vfl (optional)
  43. 'loss_cls_weight': 0.5,
  44. 'loss_iou_weight': 7.5,
  45. 'loss_dfl_weight': 1.5,
  46. # training configuration
  47. 'no_aug_epoch': 20,
  48. # optimizer
  49. 'optimizer': 'sgd', # optional: sgd, adamw
  50. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  51. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  52. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  53. # model EMA
  54. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  55. 'ema_tau': 2000,
  56. # lr schedule
  57. 'scheduler': 'linear',
  58. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  59. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  60. 'warmup_momentum': 0.8,
  61. 'warmup_bias_lr': 0.1,
  62. },
  63. 'yolov8_s':{
  64. # input
  65. 'trans_type': 'yolov5_small',
  66. 'multi_scale': [0.5, 1.5], # 320 -> 960
  67. # model
  68. 'backbone': 'elan_cspnet',
  69. 'pretrained': True,
  70. 'bk_act': 'silu',
  71. 'bk_norm': 'BN',
  72. 'bk_dpw': False,
  73. 'width': 0.5,
  74. 'depth': 0.34,
  75. 'ratio': 2.0,
  76. 'stride': [8, 16, 32], # P3, P4, P5
  77. # neck
  78. 'neck': 'sppf',
  79. 'expand_ratio': 0.5,
  80. 'pooling_size': 5,
  81. 'neck_act': 'silu',
  82. 'neck_norm': 'BN',
  83. 'neck_depthwise': False,
  84. # fpn
  85. 'fpn': 'yolov8_pafpn',
  86. 'fpn_act': 'silu',
  87. 'fpn_norm': 'BN',
  88. 'fpn_depthwise': False,
  89. # head
  90. 'head': 'decoupled_head',
  91. 'head_act': 'silu',
  92. 'head_norm': 'BN',
  93. 'num_cls_head': 2,
  94. 'num_reg_head': 2,
  95. 'head_depthwise': False,
  96. 'reg_max': 16,
  97. # matcher
  98. 'matcher': {'topk': 10,
  99. 'alpha': 0.5,
  100. 'beta': 6.0},
  101. # loss weight
  102. 'cls_loss': 'bce', # vfl (optional)
  103. 'loss_cls_weight': 0.5,
  104. 'loss_iou_weight': 7.5,
  105. 'loss_dfl_weight': 1.5,
  106. # training configuration
  107. 'no_aug_epoch': 20,
  108. # optimizer
  109. 'optimizer': 'sgd', # optional: sgd, adamw
  110. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  111. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  112. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  113. # model EMA
  114. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  115. 'ema_tau': 2000,
  116. # lr schedule
  117. 'scheduler': 'linear',
  118. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  119. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  120. 'warmup_momentum': 0.8,
  121. 'warmup_bias_lr': 0.1,
  122. },
  123. 'yolov8_m':{
  124. # input
  125. 'trans_type': 'yolov5_medium',
  126. 'multi_scale': [0.5, 1.5], # 320 -> 960
  127. # model
  128. 'backbone': 'elan_cspnet',
  129. 'pretrained': True,
  130. 'bk_act': 'silu',
  131. 'bk_norm': 'BN',
  132. 'bk_dpw': False,
  133. 'width': 0.75,
  134. 'depth': 0.67,
  135. 'ratio': 1.5,
  136. 'stride': [8, 16, 32], # P3, P4, P5
  137. # neck
  138. 'neck': 'sppf',
  139. 'expand_ratio': 0.5,
  140. 'pooling_size': 5,
  141. 'neck_act': 'silu',
  142. 'neck_norm': 'BN',
  143. 'neck_depthwise': False,
  144. # fpn
  145. 'fpn': 'yolov8_pafpn',
  146. 'fpn_act': 'silu',
  147. 'fpn_norm': 'BN',
  148. 'fpn_depthwise': False,
  149. # head
  150. 'head': 'decoupled_head',
  151. 'head_act': 'silu',
  152. 'head_norm': 'BN',
  153. 'num_cls_head': 2,
  154. 'num_reg_head': 2,
  155. 'head_depthwise': False,
  156. 'reg_max': 16,
  157. # matcher
  158. 'matcher': {'topk': 10,
  159. 'alpha': 0.5,
  160. 'beta': 6.0},
  161. # loss weight
  162. 'cls_loss': 'bce', # vfl (optional)
  163. 'loss_cls_weight': 0.5,
  164. 'loss_iou_weight': 7.5,
  165. 'loss_dfl_weight': 1.5,
  166. # training configuration
  167. 'no_aug_epoch': 20,
  168. # optimizer
  169. 'optimizer': 'sgd', # optional: sgd, adamw
  170. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  171. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  172. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  173. # model EMA
  174. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  175. 'ema_tau': 2000,
  176. # lr schedule
  177. 'scheduler': 'linear',
  178. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  179. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  180. 'warmup_momentum': 0.8,
  181. 'warmup_bias_lr': 0.1,
  182. },
  183. 'yolov8_l':{
  184. # input
  185. 'trans_type': 'yolov5_large',
  186. 'multi_scale': [0.5, 1.5], # 320 -> 960
  187. # model
  188. 'backbone': 'elan_cspnet',
  189. 'pretrained': True,
  190. 'bk_act': 'silu',
  191. 'bk_norm': 'BN',
  192. 'bk_dpw': False,
  193. 'width': 1.0,
  194. 'depth': 1.0,
  195. 'ratio': 1.0,
  196. 'stride': [8, 16, 32], # P3, P4, P5
  197. # neck
  198. 'neck': 'sppf',
  199. 'expand_ratio': 0.5,
  200. 'pooling_size': 5,
  201. 'neck_act': 'silu',
  202. 'neck_norm': 'BN',
  203. 'neck_depthwise': False,
  204. # fpn
  205. 'fpn': 'yolov8_pafpn',
  206. 'fpn_act': 'silu',
  207. 'fpn_norm': 'BN',
  208. 'fpn_depthwise': False,
  209. # head
  210. 'head': 'decoupled_head',
  211. 'head_act': 'silu',
  212. 'head_norm': 'BN',
  213. 'num_cls_head': 2,
  214. 'num_reg_head': 2,
  215. 'head_depthwise': False,
  216. 'reg_max': 16,
  217. # matcher
  218. 'matcher': {'topk': 10,
  219. 'alpha': 0.5,
  220. 'beta': 6.0},
  221. # loss weight
  222. 'cls_loss': 'bce', # vfl (optional)
  223. 'loss_cls_weight': 0.5,
  224. 'loss_iou_weight': 7.5,
  225. 'loss_dfl_weight': 1.5,
  226. # training configuration
  227. 'no_aug_epoch': 20,
  228. # optimizer
  229. 'optimizer': 'sgd', # optional: sgd, adamw
  230. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  231. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  232. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  233. # model EMA
  234. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  235. 'ema_tau': 2000,
  236. # lr schedule
  237. 'scheduler': 'linear',
  238. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  239. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  240. 'warmup_momentum': 0.8,
  241. 'warmup_bias_lr': 0.1,
  242. },
  243. 'yolov8_x':{
  244. # input
  245. 'trans_type': 'yolov5_huge',
  246. 'multi_scale': [0.5, 1.5], # 320 -> 960
  247. # model
  248. 'backbone': 'elan_cspnet',
  249. 'pretrained': True,
  250. 'bk_act': 'silu',
  251. 'bk_norm': 'BN',
  252. 'bk_dpw': False,
  253. 'width': 1.25,
  254. 'depth': 1.0,
  255. 'ratio': 1.0,
  256. 'stride': [8, 16, 32], # P3, P4, P5
  257. # neck
  258. 'neck': 'sppf',
  259. 'expand_ratio': 0.5,
  260. 'pooling_size': 5,
  261. 'neck_act': 'silu',
  262. 'neck_norm': 'BN',
  263. 'neck_depthwise': False,
  264. # fpn
  265. 'fpn': 'yolov8_pafpn',
  266. 'fpn_act': 'silu',
  267. 'fpn_norm': 'BN',
  268. 'fpn_depthwise': False,
  269. # head
  270. 'head': 'decoupled_head',
  271. 'head_act': 'silu',
  272. 'head_norm': 'BN',
  273. 'num_cls_head': 2,
  274. 'num_reg_head': 2,
  275. 'head_depthwise': False,
  276. 'reg_max': 16,
  277. # matcher
  278. 'matcher': {'topk': 10,
  279. 'alpha': 0.5,
  280. 'beta': 6.0},
  281. # loss weight
  282. 'cls_loss': 'bce', # vfl (optional)
  283. 'loss_cls_weight': 0.5,
  284. 'loss_iou_weight': 7.5,
  285. 'loss_dfl_weight': 1.5,
  286. # training configuration
  287. 'no_aug_epoch': 20,
  288. # optimizer
  289. 'optimizer': 'sgd', # optional: sgd, adamw
  290. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  291. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  292. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  293. # model EMA
  294. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  295. 'ema_tau': 2000,
  296. # lr schedule
  297. 'scheduler': 'linear',
  298. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.004
  299. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.05
  300. 'warmup_momentum': 0.8,
  301. 'warmup_bias_lr': 0.1,
  302. },
  303. }