yolov7_config.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178
  1. # YOLOv7 Config
  2. yolov7_cfg = {
  3. 'yolov7_t':{
  4. # input
  5. 'trans_type': 'yolov5_tiny',
  6. 'multi_scale': [0.5, 1.5], # 320 -> 640
  7. # model
  8. 'backbone': 'elannet_tiny',
  9. 'pretrained': True,
  10. 'bk_act': 'silu',
  11. 'bk_norm': 'BN',
  12. 'bk_dpw': False,
  13. 'stride': [8, 16, 32], # P3, P4, P5
  14. # neck
  15. 'neck': 'csp_sppf',
  16. 'expand_ratio': 0.5,
  17. 'pooling_size': 5,
  18. 'neck_act': 'silu',
  19. 'neck_norm': 'BN',
  20. 'neck_depthwise': False,
  21. # fpn
  22. 'fpn': 'yolov7_pafpn',
  23. 'fpn_act': 'silu',
  24. 'fpn_norm': 'BN',
  25. 'fpn_depthwise': False,
  26. 'nbranch': 2.0, # number of branch in ELANBlockFPN
  27. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  28. 'width': 0.5, # width factor of channel in FPN
  29. # head
  30. 'head': 'decoupled_head',
  31. 'head_act': 'silu',
  32. 'head_norm': 'BN',
  33. 'num_cls_head': 2,
  34. 'num_reg_head': 2,
  35. 'head_depthwise': False,
  36. # matcher
  37. 'matcher': {'center_sampling_radius': 2.5,
  38. 'topk_candicate': 10},
  39. # loss weight
  40. 'loss_obj_weight': 1.0,
  41. 'loss_cls_weight': 1.0,
  42. 'loss_box_weight': 5.0,
  43. # training configuration
  44. 'no_aug_epoch': 20,
  45. # optimizer
  46. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  47. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  48. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  49. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  50. # model EMA
  51. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  52. 'ema_tau': 2000,
  53. # lr schedule
  54. 'scheduler': 'linear',
  55. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  56. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  57. 'warmup_momentum': 0.8,
  58. 'warmup_bias_lr': 0.1,
  59. },
  60. 'yolov7_l':{
  61. # input
  62. 'trans_type': 'yolov5_large',
  63. 'multi_scale': [0.5, 1.25], # 320 -> 640
  64. # model
  65. 'backbone': 'elannet_large',
  66. 'pretrained': True,
  67. 'bk_act': 'silu',
  68. 'bk_norm': 'BN',
  69. 'bk_dpw': False,
  70. 'stride': [8, 16, 32], # P3, P4, P5
  71. # neck
  72. 'neck': 'csp_sppf',
  73. 'expand_ratio': 0.5,
  74. 'pooling_size': 5,
  75. 'neck_act': 'silu',
  76. 'neck_norm': 'BN',
  77. 'neck_depthwise': False,
  78. # fpn
  79. 'fpn': 'yolov7_pafpn',
  80. 'fpn_act': 'silu',
  81. 'fpn_norm': 'BN',
  82. 'fpn_depthwise': False,
  83. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  84. 'depth': 1.0, # depth factor of each branch in ELANBlockFPN
  85. 'width': 1.0, # width factor of channel in FPN
  86. # head
  87. 'head': 'decoupled_head',
  88. 'head_act': 'silu',
  89. 'head_norm': 'BN',
  90. 'num_cls_head': 2,
  91. 'num_reg_head': 2,
  92. 'head_depthwise': False,
  93. # matcher
  94. 'matcher': {'center_sampling_radius': 2.5,
  95. 'topk_candicate': 10},
  96. # loss weight
  97. 'loss_obj_weight': 1.0,
  98. 'loss_cls_weight': 1.0,
  99. 'loss_box_weight': 5.0,
  100. # training configuration
  101. 'no_aug_epoch': 20,
  102. # optimizer
  103. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  104. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  105. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  106. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  107. # model EMA
  108. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  109. 'ema_tau': 2000,
  110. # lr schedule
  111. 'scheduler': 'linear',
  112. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  113. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  114. 'warmup_momentum': 0.8,
  115. 'warmup_bias_lr': 0.1,
  116. },
  117. 'yolov7_x':{
  118. # input
  119. 'trans_type': 'yolov5_huge',
  120. 'multi_scale': [0.5, 1.25], # 320 -> 640
  121. # model
  122. 'backbone': 'elannet_huge',
  123. 'pretrained': True,
  124. 'bk_act': 'silu',
  125. 'bk_norm': 'BN',
  126. 'bk_dpw': False,
  127. 'stride': [8, 16, 32], # P3, P4, P5
  128. # neck
  129. 'neck': 'csp_sppf',
  130. 'expand_ratio': 0.5,
  131. 'pooling_size': 5,
  132. 'neck_act': 'silu',
  133. 'neck_norm': 'BN',
  134. 'neck_depthwise': False,
  135. # fpn
  136. 'fpn': 'yolov7_pafpn',
  137. 'fpn_act': 'silu',
  138. 'fpn_norm': 'BN',
  139. 'fpn_depthwise': False,
  140. 'nbranch': 4.0, # number of branch in ELANBlockFPN
  141. 'depth': 2.0, # depth factor of each branch in ELANBlockFPN
  142. 'width': 1.25, # width factor of channel in FPN
  143. # head
  144. 'head': 'decoupled_head',
  145. 'head_act': 'silu',
  146. 'head_norm': 'BN',
  147. 'num_cls_head': 2,
  148. 'num_reg_head': 2,
  149. 'head_depthwise': False,
  150. # matcher
  151. 'matcher': {'center_sampling_radius': 2.5,
  152. 'topk_candicate': 10},
  153. # loss weight
  154. 'loss_obj_weight': 1.0,
  155. 'loss_cls_weight': 1.0,
  156. 'loss_box_weight': 5.0,
  157. # training configuration
  158. 'no_aug_epoch': 20,
  159. # optimizer
  160. 'optimizer': 'sgd', # optional: sgd, adam, adamw
  161. 'momentum': 0.937, # SGD: 0.937; AdamW: invalid
  162. 'weight_decay': 5e-4, # SGD: 5e-4; AdamW: 5e-2
  163. 'clip_grad': 10, # SGD: 10.0; AdamW: -1
  164. # model EMA
  165. 'ema_decay': 0.9999, # SGD: 0.9999; AdamW: 0.9998
  166. 'ema_tau': 2000,
  167. # lr schedule
  168. 'scheduler': 'linear',
  169. 'lr0': 0.01, # SGD: 0.01; AdamW: 0.001
  170. 'lrf': 0.01, # SGD: 0.01; AdamW: 0.01
  171. 'warmup_momentum': 0.8,
  172. 'warmup_bias_lr': 0.1,
  173. },
  174. }