| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- import torch
- import torch.nn.functional as F
- from utils.box_ops import bbox2dist, get_ious
- from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
- from .matcher import build_matcher
- class Criterion(object):
- def __init__(self, args, cfg, device, num_classes=80):
- self.cfg = cfg
- self.args = args
- self.device = device
- self.num_classes = num_classes
- self.max_epoch = args.max_epoch
- self.no_aug_epoch = args.no_aug_epoch
- self.use_ema_update = cfg['ema_update']
- self.loss_box_aux = cfg['loss_box_aux']
- # ---------------- Loss weight ----------------
- loss_weights = cfg['loss_weights'][cfg['matcher']]
- self.loss_cls_weight = loss_weights['loss_cls_weight']
- self.loss_box_weight = loss_weights['loss_box_weight']
- self.loss_dfl_weight = loss_weights['loss_dfl_weight']
- # ---------------- Matcher ----------------
- ## Aligned SimOTA assigner
- self.matcher = build_matcher(cfg, num_classes)
- def ema_update(self, name: str, value, initial_value, momentum=0.9):
- if hasattr(self, name):
- old = getattr(self, name)
- else:
- old = initial_value
- new = old * momentum + value * (1 - momentum)
- setattr(self, name, new)
- return new
- # ----------------- Loss functions -----------------
- def loss_classes(self, pred_cls, gt_score):
- # compute bce loss
- loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
- return loss_cls
- def loss_classes_qfl(self, pred_cls, target, beta=2.0):
- # Quality FocalLoss
- """
- pred_cls: (torch.Tensor): [N, C]。
- target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N,)
- """
- label, score = target
- pred_sigmoid = pred_cls.sigmoid()
- scale_factor = pred_sigmoid
- zerolabel = scale_factor.new_zeros(pred_cls.shape)
- ce_loss = F.binary_cross_entropy_with_logits(
- pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
-
- bg_class_ind = pred_cls.shape[-1]
- pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
- pos_label = label[pos].long()
- scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
- ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
- pred_cls[pos, pos_label], score[pos],
- reduction='none') * scale_factor.abs().pow(beta)
- return ce_loss
-
- def loss_bboxes(self, pred_box, gt_box):
- # regression loss
- ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
- loss_box = 1.0 - ious
- return loss_box
-
- def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
- # rescale coords by stride
- gt_box_s = gt_box / stride
- anchor_s = anchor / stride
- # compute deltas
- gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
- gt_left = gt_ltrb_s.to(torch.long)
- gt_right = gt_left + 1
- weight_left = gt_right.to(torch.float) - gt_ltrb_s
- weight_right = 1 - weight_left
- # loss left
- loss_left = F.cross_entropy(
- pred_reg.view(-1, self.cfg['reg_max']),
- gt_left.view(-1),
- reduction='none').view(gt_left.shape) * weight_left
- # loss right
- loss_right = F.cross_entropy(
- pred_reg.view(-1, self.cfg['reg_max']),
- gt_right.view(-1),
- reduction='none').view(gt_left.shape) * weight_right
- loss_dfl = (loss_left + loss_right).mean(-1)
-
- if bbox_weight is not None:
- loss_dfl *= bbox_weight
- return loss_dfl
- def loss_bboxes_aux(self, pred_delta, gt_box, anchors, stride_tensors):
- gt_delta_tl = (anchors - gt_box[..., :2]) / stride_tensors
- gt_delta_rb = (gt_box[..., 2:] - anchors) / stride_tensors
- gt_delta = torch.cat([gt_delta_tl, gt_delta_rb], dim=1)
- loss_box_aux = F.l1_loss(pred_delta, gt_delta, reduction='none')
- return loss_box_aux
-
- # ----------------- Main process -----------------
- def loss_simota(self, outputs, targets, epoch=0):
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- num_anchors = sum([ab.shape[0] for ab in anchors])
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- reg_preds = torch.cat(outputs['pred_reg'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- # --------------- label assignment ---------------
- cls_targets = []
- box_targets = []
- fg_masks = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device)
- tgt_bboxes = targets[batch_idx]["boxes"].to(device)
- # check target
- if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
- # There is no valid gt
- cls_target = cls_preds.new_zeros((num_anchors, self.num_classes))
- box_target = cls_preds.new_zeros((0, 4))
- fg_mask = cls_preds.new_zeros(num_anchors).bool()
- else:
- (
- fg_mask,
- assigned_labels,
- assigned_ious,
- assigned_indexs
- ) = self.matcher(
- fpn_strides = fpn_strides,
- anchors = anchors,
- pred_cls = cls_preds[batch_idx],
- pred_box = box_preds[batch_idx],
- tgt_labels = tgt_labels,
- tgt_bboxes = tgt_bboxes
- )
- # prepare cls targets
- assigned_labels = F.one_hot(assigned_labels.long(), self.num_classes)
- assigned_labels = assigned_labels * assigned_ious.unsqueeze(-1)
- cls_target = assigned_labels.new_zeros((num_anchors, self.num_classes))
- cls_target[fg_mask] = assigned_labels
- # prepare box targets
- box_target = tgt_bboxes[assigned_indexs]
- cls_targets.append(cls_target)
- box_targets.append(box_target)
- fg_masks.append(fg_mask)
- cls_targets = torch.cat(cls_targets, 0)
- box_targets = torch.cat(box_targets, 0)
- fg_masks = torch.cat(fg_masks, 0)
- num_fgs = fg_masks.sum()
- # average loss normalizer across all the GPUs
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0)
- # update loss normalizer with EMA
- if self.use_ema_update:
- normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
- else:
- normalizer = num_fgs
-
- # ------------------ Classification loss ------------------
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.loss_classes(cls_preds, cls_targets)
- loss_cls = loss_cls.sum() / normalizer
- # ------------------ Regression loss ------------------
- box_preds_pos = box_preds.view(-1, 4)[fg_masks]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets)
- loss_box = loss_box.sum() / normalizer
- # ------------------ Distribution focal loss ------------------
- ## process anchors
- anchors = torch.cat(anchors, dim=0)
- anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
- ## process stride tensors
- strides = torch.cat(outputs['stride_tensor'], dim=0)
- strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
- ## fg preds
- reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
- anchors_pos = anchors[fg_masks]
- strides_pos = strides[fg_masks]
- ## compute dfl
- loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
- loss_dfl = loss_dfl.sum() / normalizer
- # total loss
- losses = self.loss_cls_weight * loss_cls + \
- self.loss_box_weight * loss_box + \
- self.loss_dfl_weight * loss_dfl
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- loss_dfl = loss_dfl,
- losses = losses
- )
- # ------------------ Aux regression loss ------------------
- if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
- ## delta_preds
- delta_preds = torch.cat(outputs['pred_delta'], dim=1)
- delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
- ## aux loss
- loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
- loss_box_aux = loss_box_aux.sum() / normalizer
- losses += loss_box_aux
- loss_dict['loss_box_aux'] = loss_box_aux
- return loss_dict
- def loss_aligned_simota(self, outputs, targets, epoch=0):
- """
- outputs['pred_cls']: List(Tensor) [B, M, C]
- outputs['pred_box']: List(Tensor) [B, M, 4]
- outputs['strides']: List(Int) [8, 16, 32] output stride
- targets: (List) [dict{'boxes': [...],
- 'labels': [...],
- 'orig_size': ...}, ...]
- """
- bs = outputs['pred_cls'][0].shape[0]
- device = outputs['pred_cls'][0].device
- fpn_strides = outputs['strides']
- anchors = outputs['anchors']
- # preds: [B, M, C]
- cls_preds = torch.cat(outputs['pred_cls'], dim=1)
- reg_preds = torch.cat(outputs['pred_reg'], dim=1)
- box_preds = torch.cat(outputs['pred_box'], dim=1)
- # --------------- label assignment ---------------
- cls_targets = []
- box_targets = []
- assign_metrics = []
- for batch_idx in range(bs):
- tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
- tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
- # label assignment
- assigned_result = self.matcher(fpn_strides=fpn_strides,
- anchors=anchors,
- pred_cls=cls_preds[batch_idx].detach(),
- pred_box=box_preds[batch_idx].detach(),
- gt_labels=tgt_labels,
- gt_bboxes=tgt_bboxes
- )
- cls_targets.append(assigned_result['assigned_labels'])
- box_targets.append(assigned_result['assigned_bboxes'])
- assign_metrics.append(assigned_result['assign_metrics'])
- cls_targets = torch.cat(cls_targets, dim=0)
- box_targets = torch.cat(box_targets, dim=0)
- assign_metrics = torch.cat(assign_metrics, dim=0)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((cls_targets >= 0)
- & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
- num_fgs = assign_metrics.sum()
- if is_dist_avail_and_initialized():
- torch.distributed.all_reduce(num_fgs)
- num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
-
- # update loss normalizer with EMA
- if self.use_ema_update:
- normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
- else:
- normalizer = num_fgs
- # ---------------------------- Classification loss ----------------------------
- cls_preds = cls_preds.view(-1, self.num_classes)
- loss_cls = self.loss_classes_qfl(cls_preds, (cls_targets, assign_metrics))
- loss_cls = loss_cls.sum() / normalizer
- # ---------------------------- Regression loss ----------------------------
- box_preds_pos = box_preds.view(-1, 4)[pos_inds]
- box_targets_pos = box_targets[pos_inds]
- box_weight_pos = assign_metrics[pos_inds]
- loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
- loss_box *= box_weight_pos
- loss_box = loss_box.sum() / normalizer
- # ------------------ Distribution focal loss ------------------
- ## process anchors
- anchors = torch.cat(anchors, dim=0)
- anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
- ## process stride tensors
- strides = torch.cat(outputs['stride_tensor'], dim=0)
- strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
- ## fg preds
- reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[pos_inds]
- anchors_pos = anchors[pos_inds]
- strides_pos = strides[pos_inds]
- ## compute dfl
- loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, strides_pos)
- loss_dfl *= box_weight_pos
- loss_dfl = loss_dfl.sum() / normalizer
- # total loss
- losses = self.loss_cls_weight * loss_cls + \
- self.loss_box_weight * loss_box + \
- self.loss_dfl_weight * loss_dfl
- loss_dict = dict(
- loss_cls = loss_cls,
- loss_box = loss_box,
- loss_dfl = loss_dfl,
- losses = losses
- )
- # ------------------ Aux regression loss ------------------
- if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
- ## delta_preds
- delta_preds = torch.cat(outputs['pred_delta'], dim=1)
- delta_preds_pos = delta_preds.view(-1, 4)[pos_inds]
- ## aux loss
- loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets_pos, anchors_pos, strides_pos)
- loss_box_aux = loss_box_aux.sum() / normalizer
- losses += loss_box_aux
- loss_dict['loss_box_aux'] = loss_box_aux
- return loss_dict
- def __call__(self, outputs, targets, epoch=0):
- if self.cfg['matcher'] == "simota":
- return self.loss_simota(outputs, targets, epoch)
- elif self.cfg['matcher'] == "aligned_simota":
- return self.loss_aligned_simota(outputs, targets, epoch)
-
- def build_criterion(args, cfg, device, num_classes):
- criterion = Criterion(
- args=args,
- cfg=cfg,
- device=device,
- num_classes=num_classes
- )
- return criterion
- if __name__ == "__main__":
- pass
|