loss.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. import torch
  2. import torch.nn.functional as F
  3. from utils.box_ops import bbox2dist, get_ious
  4. from utils.distributed_utils import get_world_size, is_dist_avail_and_initialized
  5. from .matcher import build_matcher
  6. class Criterion(object):
  7. def __init__(self, args, cfg, device, num_classes=80):
  8. self.cfg = cfg
  9. self.args = args
  10. self.device = device
  11. self.num_classes = num_classes
  12. self.max_epoch = args.max_epoch
  13. self.no_aug_epoch = args.no_aug_epoch
  14. self.use_ema_update = cfg['ema_update']
  15. self.loss_box_aux = cfg['loss_box_aux']
  16. # ---------------- Loss weight ----------------
  17. loss_weights = cfg['loss_weights'][cfg['matcher']]
  18. self.loss_cls_weight = loss_weights['loss_cls_weight']
  19. self.loss_box_weight = loss_weights['loss_box_weight']
  20. self.loss_dfl_weight = loss_weights['loss_dfl_weight']
  21. # ---------------- Matcher ----------------
  22. ## Aligned SimOTA assigner
  23. self.matcher = build_matcher(cfg, num_classes)
  24. def ema_update(self, name: str, value, initial_value, momentum=0.9):
  25. if hasattr(self, name):
  26. old = getattr(self, name)
  27. else:
  28. old = initial_value
  29. new = old * momentum + value * (1 - momentum)
  30. setattr(self, name, new)
  31. return new
  32. # ----------------- Loss functions -----------------
  33. def loss_classes(self, pred_cls, gt_score):
  34. # compute bce loss
  35. loss_cls = F.binary_cross_entropy_with_logits(pred_cls, gt_score, reduction='none')
  36. return loss_cls
  37. def loss_classes_qfl(self, pred_cls, target, beta=2.0):
  38. # Quality FocalLoss
  39. """
  40. pred_cls: (torch.Tensor): [N, C]。
  41. target: (tuple([torch.Tensor], [torch.Tensor])): label -> (N,), score -> (N,)
  42. """
  43. label, score = target
  44. pred_sigmoid = pred_cls.sigmoid()
  45. scale_factor = pred_sigmoid
  46. zerolabel = scale_factor.new_zeros(pred_cls.shape)
  47. ce_loss = F.binary_cross_entropy_with_logits(
  48. pred_cls, zerolabel, reduction='none') * scale_factor.pow(beta)
  49. bg_class_ind = pred_cls.shape[-1]
  50. pos = ((label >= 0) & (label < bg_class_ind)).nonzero().squeeze(1)
  51. pos_label = label[pos].long()
  52. scale_factor = score[pos] - pred_sigmoid[pos, pos_label]
  53. ce_loss[pos, pos_label] = F.binary_cross_entropy_with_logits(
  54. pred_cls[pos, pos_label], score[pos],
  55. reduction='none') * scale_factor.abs().pow(beta)
  56. return ce_loss
  57. def loss_bboxes(self, pred_box, gt_box):
  58. # regression loss
  59. ious = get_ious(pred_box, gt_box, 'xyxy', 'giou')
  60. loss_box = 1.0 - ious
  61. return loss_box
  62. def loss_dfl(self, pred_reg, gt_box, anchor, stride, bbox_weight=None):
  63. # rescale coords by stride
  64. gt_box_s = gt_box / stride
  65. anchor_s = anchor / stride
  66. # compute deltas
  67. gt_ltrb_s = bbox2dist(anchor_s, gt_box_s, self.cfg['reg_max'] - 1)
  68. gt_left = gt_ltrb_s.to(torch.long)
  69. gt_right = gt_left + 1
  70. weight_left = gt_right.to(torch.float) - gt_ltrb_s
  71. weight_right = 1 - weight_left
  72. # loss left
  73. loss_left = F.cross_entropy(
  74. pred_reg.view(-1, self.cfg['reg_max']),
  75. gt_left.view(-1),
  76. reduction='none').view(gt_left.shape) * weight_left
  77. # loss right
  78. loss_right = F.cross_entropy(
  79. pred_reg.view(-1, self.cfg['reg_max']),
  80. gt_right.view(-1),
  81. reduction='none').view(gt_left.shape) * weight_right
  82. loss_dfl = (loss_left + loss_right).mean(-1)
  83. if bbox_weight is not None:
  84. loss_dfl *= bbox_weight
  85. return loss_dfl
  86. def loss_bboxes_aux(self, pred_delta, gt_box, anchors, stride_tensors):
  87. gt_delta_tl = (anchors - gt_box[..., :2]) / stride_tensors
  88. gt_delta_rb = (gt_box[..., 2:] - anchors) / stride_tensors
  89. gt_delta = torch.cat([gt_delta_tl, gt_delta_rb], dim=1)
  90. loss_box_aux = F.l1_loss(pred_delta, gt_delta, reduction='none')
  91. return loss_box_aux
  92. # ----------------- Main process -----------------
  93. def loss_simota(self, outputs, targets, epoch=0):
  94. bs = outputs['pred_cls'][0].shape[0]
  95. device = outputs['pred_cls'][0].device
  96. fpn_strides = outputs['strides']
  97. anchors = outputs['anchors']
  98. num_anchors = sum([ab.shape[0] for ab in anchors])
  99. # preds: [B, M, C]
  100. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  101. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  102. box_preds = torch.cat(outputs['pred_box'], dim=1)
  103. # --------------- label assignment ---------------
  104. cls_targets = []
  105. box_targets = []
  106. fg_masks = []
  107. for batch_idx in range(bs):
  108. tgt_labels = targets[batch_idx]["labels"].to(device)
  109. tgt_bboxes = targets[batch_idx]["boxes"].to(device)
  110. # check target
  111. if len(tgt_labels) == 0 or tgt_bboxes.max().item() == 0.:
  112. # There is no valid gt
  113. cls_target = cls_preds.new_zeros((num_anchors, self.num_classes))
  114. box_target = cls_preds.new_zeros((0, 4))
  115. fg_mask = cls_preds.new_zeros(num_anchors).bool()
  116. else:
  117. (
  118. fg_mask,
  119. assigned_labels,
  120. assigned_ious,
  121. assigned_indexs
  122. ) = self.matcher(
  123. fpn_strides = fpn_strides,
  124. anchors = anchors,
  125. pred_cls = cls_preds[batch_idx],
  126. pred_box = box_preds[batch_idx],
  127. tgt_labels = tgt_labels,
  128. tgt_bboxes = tgt_bboxes
  129. )
  130. # prepare cls targets
  131. assigned_labels = F.one_hot(assigned_labels.long(), self.num_classes)
  132. assigned_labels = assigned_labels * assigned_ious.unsqueeze(-1)
  133. cls_target = assigned_labels.new_zeros((num_anchors, self.num_classes))
  134. cls_target[fg_mask] = assigned_labels
  135. # prepare box targets
  136. box_target = tgt_bboxes[assigned_indexs]
  137. cls_targets.append(cls_target)
  138. box_targets.append(box_target)
  139. fg_masks.append(fg_mask)
  140. cls_targets = torch.cat(cls_targets, 0)
  141. box_targets = torch.cat(box_targets, 0)
  142. fg_masks = torch.cat(fg_masks, 0)
  143. num_fgs = fg_masks.sum()
  144. # average loss normalizer across all the GPUs
  145. if is_dist_avail_and_initialized():
  146. torch.distributed.all_reduce(num_fgs)
  147. num_fgs = (num_fgs / get_world_size()).clamp(1.0)
  148. # update loss normalizer with EMA
  149. if self.use_ema_update:
  150. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  151. else:
  152. normalizer = num_fgs
  153. # ------------------ Classification loss ------------------
  154. cls_preds = cls_preds.view(-1, self.num_classes)
  155. loss_cls = self.loss_classes(cls_preds, cls_targets)
  156. loss_cls = loss_cls.sum() / normalizer
  157. # ------------------ Regression loss ------------------
  158. box_preds_pos = box_preds.view(-1, 4)[fg_masks]
  159. loss_box = self.loss_bboxes(box_preds_pos, box_targets)
  160. loss_box = loss_box.sum() / normalizer
  161. # ------------------ Distribution focal loss ------------------
  162. ## process anchors
  163. anchors = torch.cat(anchors, dim=0)
  164. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  165. ## process stride tensors
  166. strides = torch.cat(outputs['stride_tensor'], dim=0)
  167. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  168. ## fg preds
  169. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[fg_masks]
  170. anchors_pos = anchors[fg_masks]
  171. strides_pos = strides[fg_masks]
  172. ## compute dfl
  173. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets, anchors_pos, strides_pos)
  174. loss_dfl = loss_dfl.sum() / normalizer
  175. # total loss
  176. losses = self.loss_cls_weight * loss_cls + \
  177. self.loss_box_weight * loss_box + \
  178. self.loss_dfl_weight * loss_dfl
  179. loss_dict = dict(
  180. loss_cls = loss_cls,
  181. loss_box = loss_box,
  182. loss_dfl = loss_dfl,
  183. losses = losses
  184. )
  185. # ------------------ Aux regression loss ------------------
  186. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  187. ## delta_preds
  188. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  189. delta_preds_pos = delta_preds.view(-1, 4)[fg_masks]
  190. ## aux loss
  191. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets, anchors_pos, strides_pos)
  192. loss_box_aux = loss_box_aux.sum() / normalizer
  193. losses += loss_box_aux
  194. loss_dict['loss_box_aux'] = loss_box_aux
  195. return loss_dict
  196. def loss_aligned_simota(self, outputs, targets, epoch=0):
  197. """
  198. outputs['pred_cls']: List(Tensor) [B, M, C]
  199. outputs['pred_box']: List(Tensor) [B, M, 4]
  200. outputs['strides']: List(Int) [8, 16, 32] output stride
  201. targets: (List) [dict{'boxes': [...],
  202. 'labels': [...],
  203. 'orig_size': ...}, ...]
  204. """
  205. bs = outputs['pred_cls'][0].shape[0]
  206. device = outputs['pred_cls'][0].device
  207. fpn_strides = outputs['strides']
  208. anchors = outputs['anchors']
  209. # preds: [B, M, C]
  210. cls_preds = torch.cat(outputs['pred_cls'], dim=1)
  211. reg_preds = torch.cat(outputs['pred_reg'], dim=1)
  212. box_preds = torch.cat(outputs['pred_box'], dim=1)
  213. # --------------- label assignment ---------------
  214. cls_targets = []
  215. box_targets = []
  216. assign_metrics = []
  217. for batch_idx in range(bs):
  218. tgt_labels = targets[batch_idx]["labels"].to(device) # [N,]
  219. tgt_bboxes = targets[batch_idx]["boxes"].to(device) # [N, 4]
  220. # label assignment
  221. assigned_result = self.matcher(fpn_strides=fpn_strides,
  222. anchors=anchors,
  223. pred_cls=cls_preds[batch_idx].detach(),
  224. pred_box=box_preds[batch_idx].detach(),
  225. gt_labels=tgt_labels,
  226. gt_bboxes=tgt_bboxes
  227. )
  228. cls_targets.append(assigned_result['assigned_labels'])
  229. box_targets.append(assigned_result['assigned_bboxes'])
  230. assign_metrics.append(assigned_result['assign_metrics'])
  231. cls_targets = torch.cat(cls_targets, dim=0)
  232. box_targets = torch.cat(box_targets, dim=0)
  233. assign_metrics = torch.cat(assign_metrics, dim=0)
  234. # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
  235. bg_class_ind = self.num_classes
  236. pos_inds = ((cls_targets >= 0)
  237. & (cls_targets < bg_class_ind)).nonzero().squeeze(1)
  238. num_fgs = assign_metrics.sum()
  239. if is_dist_avail_and_initialized():
  240. torch.distributed.all_reduce(num_fgs)
  241. num_fgs = (num_fgs / get_world_size()).clamp(1.0).item()
  242. # update loss normalizer with EMA
  243. if self.use_ema_update:
  244. normalizer = self.ema_update("loss_normalizer", max(num_fgs, 1), 100)
  245. else:
  246. normalizer = num_fgs
  247. # ---------------------------- Classification loss ----------------------------
  248. cls_preds = cls_preds.view(-1, self.num_classes)
  249. loss_cls = self.loss_classes_qfl(cls_preds, (cls_targets, assign_metrics))
  250. loss_cls = loss_cls.sum() / normalizer
  251. # ---------------------------- Regression loss ----------------------------
  252. box_preds_pos = box_preds.view(-1, 4)[pos_inds]
  253. box_targets_pos = box_targets[pos_inds]
  254. box_weight_pos = assign_metrics[pos_inds]
  255. loss_box = self.loss_bboxes(box_preds_pos, box_targets_pos)
  256. loss_box *= box_weight_pos
  257. loss_box = loss_box.sum() / normalizer
  258. # ------------------ Distribution focal loss ------------------
  259. ## process anchors
  260. anchors = torch.cat(anchors, dim=0)
  261. anchors = anchors[None].repeat(bs, 1, 1).view(-1, 2)
  262. ## process stride tensors
  263. strides = torch.cat(outputs['stride_tensor'], dim=0)
  264. strides = strides.unsqueeze(0).repeat(bs, 1, 1).view(-1, 1)
  265. ## fg preds
  266. reg_preds_pos = reg_preds.view(-1, 4*self.cfg['reg_max'])[pos_inds]
  267. anchors_pos = anchors[pos_inds]
  268. strides_pos = strides[pos_inds]
  269. ## compute dfl
  270. loss_dfl = self.loss_dfl(reg_preds_pos, box_targets_pos, anchors_pos, strides_pos)
  271. loss_dfl *= box_weight_pos
  272. loss_dfl = loss_dfl.sum() / normalizer
  273. # total loss
  274. losses = self.loss_cls_weight * loss_cls + \
  275. self.loss_box_weight * loss_box + \
  276. self.loss_dfl_weight * loss_dfl
  277. loss_dict = dict(
  278. loss_cls = loss_cls,
  279. loss_box = loss_box,
  280. loss_dfl = loss_dfl,
  281. losses = losses
  282. )
  283. # ------------------ Aux regression loss ------------------
  284. if epoch >= (self.max_epoch - self.no_aug_epoch - 1) and self.loss_box_aux:
  285. ## delta_preds
  286. delta_preds = torch.cat(outputs['pred_delta'], dim=1)
  287. delta_preds_pos = delta_preds.view(-1, 4)[pos_inds]
  288. ## aux loss
  289. loss_box_aux = self.loss_bboxes_aux(delta_preds_pos, box_targets_pos, anchors_pos, strides_pos)
  290. loss_box_aux = loss_box_aux.sum() / normalizer
  291. losses += loss_box_aux
  292. loss_dict['loss_box_aux'] = loss_box_aux
  293. return loss_dict
  294. def __call__(self, outputs, targets, epoch=0):
  295. if self.cfg['matcher'] == "simota":
  296. return self.loss_simota(outputs, targets, epoch)
  297. elif self.cfg['matcher'] == "aligned_simota":
  298. return self.loss_aligned_simota(outputs, targets, epoch)
  299. def build_criterion(args, cfg, device, num_classes):
  300. criterion = Criterion(
  301. args=args,
  302. cfg=cfg,
  303. device=device,
  304. num_classes=num_classes
  305. )
  306. return criterion
  307. if __name__ == "__main__":
  308. pass