engine.py 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320
  1. import torch
  2. import torch.distributed as dist
  3. import time
  4. import os
  5. import numpy as np
  6. import random
  7. # ----------------- Extra Components -----------------
  8. from utils import distributed_utils
  9. from utils.misc import ModelEMA, CollateFunc, build_dataloader
  10. from utils.vis_tools import vis_data
  11. # ----------------- Evaluator Components -----------------
  12. from evaluator.build import build_evluator
  13. # ----------------- Optimizer & LrScheduler Components -----------------
  14. from utils.solver.optimizer import build_yolo_optimizer, build_detr_optimizer
  15. from utils.solver.lr_scheduler import build_lr_scheduler
  16. # ----------------- Dataset Components -----------------
  17. from dataset.build import build_dataset, build_transform
  18. # YOLOv8-style Trainer
  19. class Yolov8Trainer(object):
  20. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  21. # ------------------- basic parameters -------------------
  22. self.args = args
  23. self.epoch = 0
  24. self.best_map = -1.
  25. self.last_opt_step = 0
  26. self.no_aug_epoch = args.no_aug_epoch
  27. self.clip_grad = 10
  28. self.device = device
  29. self.criterion = criterion
  30. self.world_size = world_size
  31. self.heavy_eval = False
  32. self.second_stage = False
  33. # ---------------------------- Hyperparameters refer to YOLOv8 ----------------------------
  34. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.937, 'weight_decay': 5e-4, 'lr0': 0.01}
  35. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  36. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  37. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  38. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  39. self.data_cfg = data_cfg
  40. self.model_cfg = model_cfg
  41. self.trans_cfg = trans_cfg
  42. # ---------------------------- Build Transform ----------------------------
  43. self.train_transform, self.trans_cfg = build_transform(
  44. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=True)
  45. self.val_transform, _ = build_transform(
  46. args=args, trans_config=self.trans_cfg, max_stride=model_cfg['max_stride'], is_train=False)
  47. # ---------------------------- Build Dataset & Dataloader ----------------------------
  48. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  49. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  50. # ---------------------------- Build Evaluator ----------------------------
  51. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  52. # ---------------------------- Build Grad. Scaler ----------------------------
  53. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  54. # ---------------------------- Build Optimizer ----------------------------
  55. accumulate = max(1, round(64 / self.args.batch_size))
  56. print('Grad Accumulate: {}'.format(accumulate))
  57. self.optimizer_dict['weight_decay'] *= self.args.batch_size * accumulate / 64
  58. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  59. # ---------------------------- Build LR Scheduler ----------------------------
  60. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  61. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  62. if self.args.resume:
  63. self.lr_scheduler.step()
  64. # ---------------------------- Build Model-EMA ----------------------------
  65. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  66. print('Build ModelEMA ...')
  67. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  68. else:
  69. self.model_ema = None
  70. def check_second_stage(self):
  71. # set second stage
  72. print('============== Second stage of Training ==============')
  73. self.second_stage = True
  74. # close mosaic augmentation
  75. if self.train_loader.dataset.mosaic_prob > 0.:
  76. print(' - Close < Mosaic Augmentation > ...')
  77. self.train_loader.dataset.mosaic_prob = 0.
  78. self.heavy_eval = True
  79. # close mixup augmentation
  80. if self.train_loader.dataset.mixup_prob > 0.:
  81. print(' - Close < Mixup Augmentation > ...')
  82. self.train_loader.dataset.mixup_prob = 0.
  83. self.heavy_eval = True
  84. # close rotation augmentation
  85. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  86. print(' - Close < degress of rotation > ...')
  87. self.trans_cfg['degrees'] = 0.0
  88. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  89. print(' - Close < shear of rotation >...')
  90. self.trans_cfg['shear'] = 0.0
  91. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  92. print(' - Close < perspective of rotation > ...')
  93. self.trans_cfg['perspective'] = 0.0
  94. # build a new transform for second stage
  95. print(' - Rebuild transforms ...')
  96. self.train_transform, self.trans_cfg = build_transform(
  97. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  98. self.train_loader.dataset.transform = self.train_transform
  99. def train(self, model):
  100. for epoch in range(self.start_epoch, self.args.max_epoch):
  101. if self.args.distributed:
  102. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  103. # check second stage
  104. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  105. self.check_second_stage()
  106. # train one epoch
  107. self.epoch = epoch
  108. self.train_one_epoch(model)
  109. # eval one epoch
  110. if self.heavy_eval:
  111. model_eval = model.module if self.args.distributed else model
  112. self.eval(model_eval)
  113. else:
  114. model_eval = model.module if self.args.distributed else model
  115. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  116. self.eval(model_eval)
  117. def eval(self, model):
  118. # chech model
  119. model_eval = model if self.model_ema is None else self.model_ema.ema
  120. # path to save model
  121. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  122. os.makedirs(path_to_save, exist_ok=True)
  123. if distributed_utils.is_main_process():
  124. # check evaluator
  125. if self.evaluator is None:
  126. print('No evaluator ... save model and go on training.')
  127. print('Saving state, epoch: {}'.format(self.epoch + 1))
  128. weight_name = '{}_no_eval.pth'.format(self.args.model)
  129. checkpoint_path = os.path.join(path_to_save, weight_name)
  130. torch.save({'model': model_eval.state_dict(),
  131. 'mAP': -1.,
  132. 'optimizer': self.optimizer.state_dict(),
  133. 'epoch': self.epoch,
  134. 'args': self.args},
  135. checkpoint_path)
  136. else:
  137. print('eval ...')
  138. # set eval mode
  139. model_eval.trainable = False
  140. model_eval.eval()
  141. # evaluate
  142. with torch.no_grad():
  143. self.evaluator.evaluate(model_eval)
  144. # save model
  145. cur_map = self.evaluator.map
  146. if cur_map > self.best_map:
  147. # update best-map
  148. self.best_map = cur_map
  149. # save model
  150. print('Saving state, epoch:', self.epoch + 1)
  151. weight_name = '{}_best.pth'.format(self.args.model)
  152. checkpoint_path = os.path.join(path_to_save, weight_name)
  153. torch.save({'model': model_eval.state_dict(),
  154. 'mAP': round(self.best_map*100, 1),
  155. 'optimizer': self.optimizer.state_dict(),
  156. 'epoch': self.epoch,
  157. 'args': self.args},
  158. checkpoint_path)
  159. # set train mode.
  160. model_eval.trainable = True
  161. model_eval.train()
  162. if self.args.distributed:
  163. # wait for all processes to synchronize
  164. dist.barrier()
  165. def train_one_epoch(self, model):
  166. # basic parameters
  167. epoch_size = len(self.train_loader)
  168. img_size = self.args.img_size
  169. t0 = time.time()
  170. nw = epoch_size * self.args.wp_epoch
  171. accumulate = accumulate = max(1, round(64 / self.args.batch_size))
  172. # train one epoch
  173. for iter_i, (images, targets) in enumerate(self.train_loader):
  174. ni = iter_i + self.epoch * epoch_size
  175. # Warmup
  176. if ni <= nw:
  177. xi = [0, nw] # x interp
  178. accumulate = max(1, np.interp(ni, xi, [1, 64 / self.args.batch_size]).round())
  179. for j, x in enumerate(self.optimizer.param_groups):
  180. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  181. x['lr'] = np.interp(
  182. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  183. if 'momentum' in x:
  184. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  185. # to device
  186. images = images.to(self.device, non_blocking=True).float() / 255.
  187. # Multi scale
  188. if self.args.multi_scale:
  189. images, targets, img_size = self.rescale_image_targets(
  190. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  191. else:
  192. targets = self.refine_targets(targets, self.args.min_box_size)
  193. # visualize train targets
  194. if self.args.vis_tgt:
  195. vis_data(images*255, targets)
  196. # inference
  197. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  198. outputs = model(images)
  199. # loss
  200. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  201. losses = loss_dict['losses']
  202. losses *= images.shape[0] # loss * bs
  203. # reduce
  204. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  205. # gradient averaged between devices in DDP mode
  206. losses *= distributed_utils.get_world_size()
  207. # backward
  208. self.scaler.scale(losses).backward()
  209. # Optimize
  210. if ni - self.last_opt_step >= accumulate:
  211. if self.clip_grad > 0:
  212. # unscale gradients
  213. self.scaler.unscale_(self.optimizer)
  214. # clip gradients
  215. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  216. # optimizer.step
  217. self.scaler.step(self.optimizer)
  218. self.scaler.update()
  219. self.optimizer.zero_grad()
  220. # ema
  221. if self.model_ema is not None:
  222. self.model_ema.update(model)
  223. self.last_opt_step = ni
  224. # display
  225. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  226. t1 = time.time()
  227. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  228. # basic infor
  229. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  230. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  231. log += '[lr: {:.6f}]'.format(cur_lr[2])
  232. # loss infor
  233. for k in loss_dict_reduced.keys():
  234. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  235. # other infor
  236. log += '[time: {:.2f}]'.format(t1 - t0)
  237. log += '[size: {}]'.format(img_size)
  238. # print log infor
  239. print(log, flush=True)
  240. t0 = time.time()
  241. self.lr_scheduler.step()
  242. def refine_targets(self, targets, min_box_size):
  243. # rescale targets
  244. for tgt in targets:
  245. boxes = tgt["boxes"].clone()
  246. labels = tgt["labels"].clone()
  247. # refine tgt
  248. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  249. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  250. keep = (min_tgt_size >= min_box_size)
  251. tgt["boxes"] = boxes[keep]
  252. tgt["labels"] = labels[keep]
  253. return targets
  254. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  255. """
  256. Deployed for Multi scale trick.
  257. """
  258. if isinstance(stride, int):
  259. max_stride = stride
  260. elif isinstance(stride, list):
  261. max_stride = max(stride)
  262. # During training phase, the shape of input image is square.
  263. old_img_size = images.shape[-1]
  264. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  265. new_img_size = new_img_size // max_stride * max_stride # size
  266. if new_img_size / old_img_size != 1:
  267. # interpolate
  268. images = torch.nn.functional.interpolate(
  269. input=images,
  270. size=new_img_size,
  271. mode='bilinear',
  272. align_corners=False)
  273. # rescale targets
  274. for tgt in targets:
  275. boxes = tgt["boxes"].clone()
  276. labels = tgt["labels"].clone()
  277. boxes = torch.clamp(boxes, 0, old_img_size)
  278. # rescale box
  279. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  280. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  281. # refine tgt
  282. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  283. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  284. keep = (min_tgt_size >= min_box_size)
  285. tgt["boxes"] = boxes[keep]
  286. tgt["labels"] = labels[keep]
  287. return images, targets, new_img_size
  288. # YOLOX-syle Trainer
  289. class YoloxTrainer(object):
  290. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  291. # ------------------- basic parameters -------------------
  292. self.args = args
  293. self.epoch = 0
  294. self.best_map = -1.
  295. self.device = device
  296. self.criterion = criterion
  297. self.world_size = world_size
  298. self.no_aug_epoch = args.no_aug_epoch
  299. self.heavy_eval = False
  300. self.second_stage = False
  301. # ---------------------------- Hyperparameters refer to YOLOX ----------------------------
  302. self.optimizer_dict = {'optimizer': 'sgd', 'momentum': 0.9, 'weight_decay': 5e-4, 'lr0': 0.01}
  303. self.ema_dict = {'ema_decay': 0.9999, 'ema_tau': 2000}
  304. self.lr_schedule_dict = {'scheduler': 'cosine', 'lrf': 0.05}
  305. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  306. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  307. self.data_cfg = data_cfg
  308. self.model_cfg = model_cfg
  309. self.trans_cfg = trans_cfg
  310. # ---------------------------- Build Transform ----------------------------
  311. self.train_transform, self.trans_cfg = build_transform(
  312. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  313. self.val_transform, _ = build_transform(
  314. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  315. # ---------------------------- Build Dataset & Dataloader ----------------------------
  316. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  317. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  318. # ---------------------------- Build Evaluator ----------------------------
  319. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  320. # ---------------------------- Build Grad. Scaler ----------------------------
  321. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  322. # ---------------------------- Build Optimizer ----------------------------
  323. self.optimizer_dict['lr0'] *= self.args.batch_size / 64
  324. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  325. # ---------------------------- Build LR Scheduler ----------------------------
  326. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  327. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  328. if self.args.resume:
  329. self.lr_scheduler.step()
  330. # ---------------------------- Build Model-EMA ----------------------------
  331. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  332. print('Build ModelEMA ...')
  333. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  334. else:
  335. self.model_ema = None
  336. def train(self, model):
  337. for epoch in range(self.start_epoch, self.args.max_epoch):
  338. if self.args.distributed:
  339. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  340. # check second stage
  341. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  342. self.check_second_stage()
  343. # train one epoch
  344. self.epoch = epoch
  345. self.train_one_epoch(model)
  346. # eval one epoch
  347. if self.heavy_eval:
  348. model_eval = model.module if self.args.distributed else model
  349. self.eval(model_eval)
  350. else:
  351. model_eval = model.module if self.args.distributed else model
  352. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  353. self.eval(model_eval)
  354. def eval(self, model):
  355. # chech model
  356. model_eval = model if self.model_ema is None else self.model_ema.ema
  357. # path to save model
  358. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  359. os.makedirs(path_to_save, exist_ok=True)
  360. if distributed_utils.is_main_process():
  361. # check evaluator
  362. if self.evaluator is None:
  363. print('No evaluator ... save model and go on training.')
  364. print('Saving state, epoch: {}'.format(self.epoch + 1))
  365. weight_name = '{}_no_eval.pth'.format(self.args.model)
  366. checkpoint_path = os.path.join(path_to_save, weight_name)
  367. torch.save({'model': model_eval.state_dict(),
  368. 'mAP': -1.,
  369. 'optimizer': self.optimizer.state_dict(),
  370. 'epoch': self.epoch,
  371. 'args': self.args},
  372. checkpoint_path)
  373. else:
  374. print('eval ...')
  375. # set eval mode
  376. model_eval.trainable = False
  377. model_eval.eval()
  378. # evaluate
  379. with torch.no_grad():
  380. self.evaluator.evaluate(model_eval)
  381. # save model
  382. cur_map = self.evaluator.map
  383. if cur_map > self.best_map:
  384. # update best-map
  385. self.best_map = cur_map
  386. # save model
  387. print('Saving state, epoch:', self.epoch + 1)
  388. weight_name = '{}_best.pth'.format(self.args.model)
  389. checkpoint_path = os.path.join(path_to_save, weight_name)
  390. torch.save({'model': model_eval.state_dict(),
  391. 'mAP': round(self.best_map*100, 1),
  392. 'optimizer': self.optimizer.state_dict(),
  393. 'epoch': self.epoch,
  394. 'args': self.args},
  395. checkpoint_path)
  396. # set train mode.
  397. model_eval.trainable = True
  398. model_eval.train()
  399. if self.args.distributed:
  400. # wait for all processes to synchronize
  401. dist.barrier()
  402. def train_one_epoch(self, model):
  403. # basic parameters
  404. epoch_size = len(self.train_loader)
  405. img_size = self.args.img_size
  406. t0 = time.time()
  407. nw = epoch_size * self.args.wp_epoch
  408. # Train one epoch
  409. for iter_i, (images, targets) in enumerate(self.train_loader):
  410. ni = iter_i + self.epoch * epoch_size
  411. # Warmup
  412. if ni <= nw:
  413. xi = [0, nw] # x interp
  414. for j, x in enumerate(self.optimizer.param_groups):
  415. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  416. x['lr'] = np.interp(
  417. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  418. if 'momentum' in x:
  419. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  420. # To device
  421. images = images.to(self.device, non_blocking=True).float() / 255.
  422. # Multi scale
  423. if self.args.multi_scale and ni % 10 == 0:
  424. images, targets, img_size = self.rescale_image_targets(
  425. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  426. else:
  427. targets = self.refine_targets(targets, self.args.min_box_size)
  428. # Visualize train targets
  429. if self.args.vis_tgt:
  430. vis_data(images*255, targets)
  431. # Inference
  432. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  433. outputs = model(images)
  434. # Compute loss
  435. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  436. losses = loss_dict['losses']
  437. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  438. # Backward
  439. self.scaler.scale(losses).backward()
  440. # Optimize
  441. self.scaler.step(self.optimizer)
  442. self.scaler.update()
  443. self.optimizer.zero_grad()
  444. # ema
  445. if self.model_ema is not None:
  446. self.model_ema.update(model)
  447. # Logs
  448. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  449. t1 = time.time()
  450. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  451. # basic infor
  452. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  453. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  454. log += '[lr: {:.6f}]'.format(cur_lr[2])
  455. # loss infor
  456. for k in loss_dict_reduced.keys():
  457. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  458. # other infor
  459. log += '[time: {:.2f}]'.format(t1 - t0)
  460. log += '[size: {}]'.format(img_size)
  461. # print log infor
  462. print(log, flush=True)
  463. t0 = time.time()
  464. # LR Schedule
  465. self.lr_scheduler.step()
  466. def check_second_stage(self):
  467. # set second stage
  468. print('============== Second stage of Training ==============')
  469. self.second_stage = True
  470. # close mosaic augmentation
  471. if self.train_loader.dataset.mosaic_prob > 0.:
  472. print(' - Close < Mosaic Augmentation > ...')
  473. self.train_loader.dataset.mosaic_prob = 0.
  474. self.heavy_eval = True
  475. # close mixup augmentation
  476. if self.train_loader.dataset.mixup_prob > 0.:
  477. print(' - Close < Mixup Augmentation > ...')
  478. self.train_loader.dataset.mixup_prob = 0.
  479. self.heavy_eval = True
  480. # close rotation augmentation
  481. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  482. print(' - Close < degress of rotation > ...')
  483. self.trans_cfg['degrees'] = 0.0
  484. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  485. print(' - Close < shear of rotation >...')
  486. self.trans_cfg['shear'] = 0.0
  487. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  488. print(' - Close < perspective of rotation > ...')
  489. self.trans_cfg['perspective'] = 0.0
  490. # close random affine
  491. if 'translate' in self.trans_cfg.keys() and self.trans_cfg['translate'] > 0.0:
  492. print(' - Close < translate of affine > ...')
  493. self.trans_cfg['translate'] = 0.0
  494. if 'scale' in self.trans_cfg.keys():
  495. print(' - Close < scale of affine >...')
  496. self.trans_cfg['scale'] = [1.0, 1.0]
  497. # build a new transform for second stage
  498. print(' - Rebuild transforms ...')
  499. self.train_transform, self.trans_cfg = build_transform(
  500. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  501. self.train_loader.dataset.transform = self.train_transform
  502. def refine_targets(self, targets, min_box_size):
  503. # rescale targets
  504. for tgt in targets:
  505. boxes = tgt["boxes"].clone()
  506. labels = tgt["labels"].clone()
  507. # refine tgt
  508. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  509. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  510. keep = (min_tgt_size >= min_box_size)
  511. tgt["boxes"] = boxes[keep]
  512. tgt["labels"] = labels[keep]
  513. return targets
  514. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  515. """
  516. Deployed for Multi scale trick.
  517. """
  518. if isinstance(stride, int):
  519. max_stride = stride
  520. elif isinstance(stride, list):
  521. max_stride = max(stride)
  522. # During training phase, the shape of input image is square.
  523. old_img_size = images.shape[-1]
  524. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  525. new_img_size = new_img_size // max_stride * max_stride # size
  526. if new_img_size / old_img_size != 1:
  527. # interpolate
  528. images = torch.nn.functional.interpolate(
  529. input=images,
  530. size=new_img_size,
  531. mode='bilinear',
  532. align_corners=False)
  533. # rescale targets
  534. for tgt in targets:
  535. boxes = tgt["boxes"].clone()
  536. labels = tgt["labels"].clone()
  537. boxes = torch.clamp(boxes, 0, old_img_size)
  538. # rescale box
  539. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  540. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  541. # refine tgt
  542. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  543. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  544. keep = (min_tgt_size >= min_box_size)
  545. tgt["boxes"] = boxes[keep]
  546. tgt["labels"] = labels[keep]
  547. return images, targets, new_img_size
  548. # RTMDet-syle Trainer
  549. class RTMTrainer(object):
  550. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  551. # ------------------- basic parameters -------------------
  552. self.args = args
  553. self.epoch = 0
  554. self.best_map = -1.
  555. self.device = device
  556. self.criterion = criterion
  557. self.world_size = world_size
  558. self.no_aug_epoch = args.no_aug_epoch
  559. self.clip_grad = 35
  560. self.heavy_eval = False
  561. self.second_stage = False
  562. # ---------------------------- Hyperparameters refer to RTMDet ----------------------------
  563. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 5e-2, 'lr0': 0.001}
  564. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  565. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  566. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  567. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  568. self.data_cfg = data_cfg
  569. self.model_cfg = model_cfg
  570. self.trans_cfg = trans_cfg
  571. # ---------------------------- Build Transform ----------------------------
  572. self.train_transform, self.trans_cfg = build_transform(
  573. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  574. self.val_transform, _ = build_transform(
  575. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  576. # ---------------------------- Build Dataset & Dataloader ----------------------------
  577. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  578. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  579. # ---------------------------- Build Evaluator ----------------------------
  580. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  581. # ---------------------------- Build Grad. Scaler ----------------------------
  582. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  583. # ---------------------------- Build Optimizer ----------------------------
  584. self.optimizer_dict['lr0'] *= self.args.batch_size / 64
  585. self.optimizer, self.start_epoch = build_yolo_optimizer(self.optimizer_dict, model, self.args.resume)
  586. # ---------------------------- Build LR Scheduler ----------------------------
  587. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  588. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  589. if self.args.resume:
  590. self.lr_scheduler.step()
  591. # ---------------------------- Build Model-EMA ----------------------------
  592. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  593. print('Build ModelEMA ...')
  594. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  595. else:
  596. self.model_ema = None
  597. def train(self, model):
  598. for epoch in range(self.start_epoch, self.args.max_epoch):
  599. if self.args.distributed:
  600. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  601. # check second stage
  602. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  603. self.check_second_stage()
  604. # train one epoch
  605. self.epoch = epoch
  606. self.train_one_epoch(model)
  607. # eval one epoch
  608. if self.heavy_eval:
  609. model_eval = model.module if self.args.distributed else model
  610. self.eval(model_eval)
  611. else:
  612. model_eval = model.module if self.args.distributed else model
  613. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  614. self.eval(model_eval)
  615. def eval(self, model):
  616. # chech model
  617. model_eval = model if self.model_ema is None else self.model_ema.ema
  618. # path to save model
  619. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  620. os.makedirs(path_to_save, exist_ok=True)
  621. if distributed_utils.is_main_process():
  622. # check evaluator
  623. if self.evaluator is None:
  624. print('No evaluator ... save model and go on training.')
  625. print('Saving state, epoch: {}'.format(self.epoch + 1))
  626. weight_name = '{}_no_eval.pth'.format(self.args.model)
  627. checkpoint_path = os.path.join(path_to_save, weight_name)
  628. torch.save({'model': model_eval.state_dict(),
  629. 'mAP': -1.,
  630. 'optimizer': self.optimizer.state_dict(),
  631. 'epoch': self.epoch,
  632. 'args': self.args},
  633. checkpoint_path)
  634. else:
  635. print('eval ...')
  636. # set eval mode
  637. model_eval.trainable = False
  638. model_eval.eval()
  639. # evaluate
  640. with torch.no_grad():
  641. self.evaluator.evaluate(model_eval)
  642. # save model
  643. cur_map = self.evaluator.map
  644. if cur_map > self.best_map:
  645. # update best-map
  646. self.best_map = cur_map
  647. # save model
  648. print('Saving state, epoch:', self.epoch + 1)
  649. weight_name = '{}_best.pth'.format(self.args.model)
  650. checkpoint_path = os.path.join(path_to_save, weight_name)
  651. torch.save({'model': model_eval.state_dict(),
  652. 'mAP': round(self.best_map*100, 1),
  653. 'optimizer': self.optimizer.state_dict(),
  654. 'epoch': self.epoch,
  655. 'args': self.args},
  656. checkpoint_path)
  657. # set train mode.
  658. model_eval.trainable = True
  659. model_eval.train()
  660. if self.args.distributed:
  661. # wait for all processes to synchronize
  662. dist.barrier()
  663. def train_one_epoch(self, model):
  664. # basic parameters
  665. epoch_size = len(self.train_loader)
  666. img_size = self.args.img_size
  667. t0 = time.time()
  668. nw = epoch_size * self.args.wp_epoch
  669. # Train one epoch
  670. for iter_i, (images, targets) in enumerate(self.train_loader):
  671. ni = iter_i + self.epoch * epoch_size
  672. # Warmup
  673. if ni <= nw:
  674. xi = [0, nw] # x interp
  675. for j, x in enumerate(self.optimizer.param_groups):
  676. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  677. x['lr'] = np.interp(
  678. ni, xi, [self.warmup_dict['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * self.lf(self.epoch)])
  679. if 'momentum' in x:
  680. x['momentum'] = np.interp(ni, xi, [self.warmup_dict['warmup_momentum'], self.optimizer_dict['momentum']])
  681. # To device
  682. images = images.to(self.device, non_blocking=True).float() / 255.
  683. # Multi scale
  684. if self.args.multi_scale:
  685. images, targets, img_size = self.rescale_image_targets(
  686. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  687. else:
  688. targets = self.refine_targets(targets, self.args.min_box_size)
  689. # Visualize train targets
  690. if self.args.vis_tgt:
  691. vis_data(images*255, targets)
  692. # Inference
  693. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  694. outputs = model(images)
  695. # Compute loss
  696. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  697. losses = loss_dict['losses']
  698. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  699. # Backward
  700. self.scaler.scale(losses).backward()
  701. # Optimize
  702. if self.clip_grad > 0:
  703. # unscale gradients
  704. self.scaler.unscale_(self.optimizer)
  705. # clip gradients
  706. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  707. # optimizer.step
  708. self.scaler.step(self.optimizer)
  709. self.scaler.update()
  710. self.optimizer.zero_grad()
  711. # ema
  712. if self.model_ema is not None:
  713. self.model_ema.update(model)
  714. # Logs
  715. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  716. t1 = time.time()
  717. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  718. # basic infor
  719. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  720. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  721. log += '[lr: {:.6f}]'.format(cur_lr[2])
  722. # loss infor
  723. for k in loss_dict_reduced.keys():
  724. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  725. # other infor
  726. log += '[time: {:.2f}]'.format(t1 - t0)
  727. log += '[size: {}]'.format(img_size)
  728. # print log infor
  729. print(log, flush=True)
  730. t0 = time.time()
  731. # LR Schedule
  732. self.lr_scheduler.step()
  733. def check_second_stage(self):
  734. # set second stage
  735. print('============== Second stage of Training ==============')
  736. self.second_stage = True
  737. # close mosaic augmentation
  738. if self.train_loader.dataset.mosaic_prob > 0.:
  739. print(' - Close < Mosaic Augmentation > ...')
  740. self.train_loader.dataset.mosaic_prob = 0.
  741. self.heavy_eval = True
  742. # close mixup augmentation
  743. if self.train_loader.dataset.mixup_prob > 0.:
  744. print(' - Close < Mixup Augmentation > ...')
  745. self.train_loader.dataset.mixup_prob = 0.
  746. self.heavy_eval = True
  747. # close rotation augmentation
  748. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  749. print(' - Close < degress of rotation > ...')
  750. self.trans_cfg['degrees'] = 0.0
  751. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  752. print(' - Close < shear of rotation >...')
  753. self.trans_cfg['shear'] = 0.0
  754. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  755. print(' - Close < perspective of rotation > ...')
  756. self.trans_cfg['perspective'] = 0.0
  757. # build a new transform for second stage
  758. print(' - Rebuild transforms ...')
  759. self.train_transform, self.trans_cfg = build_transform(
  760. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  761. self.train_loader.dataset.transform = self.train_transform
  762. def refine_targets(self, targets, min_box_size):
  763. # rescale targets
  764. for tgt in targets:
  765. boxes = tgt["boxes"].clone()
  766. labels = tgt["labels"].clone()
  767. # refine tgt
  768. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  769. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  770. keep = (min_tgt_size >= min_box_size)
  771. tgt["boxes"] = boxes[keep]
  772. tgt["labels"] = labels[keep]
  773. return targets
  774. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  775. """
  776. Deployed for Multi scale trick.
  777. """
  778. if isinstance(stride, int):
  779. max_stride = stride
  780. elif isinstance(stride, list):
  781. max_stride = max(stride)
  782. # During training phase, the shape of input image is square.
  783. old_img_size = images.shape[-1]
  784. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  785. new_img_size = new_img_size // max_stride * max_stride # size
  786. if new_img_size / old_img_size != 1:
  787. # interpolate
  788. images = torch.nn.functional.interpolate(
  789. input=images,
  790. size=new_img_size,
  791. mode='bilinear',
  792. align_corners=False)
  793. # rescale targets
  794. for tgt in targets:
  795. boxes = tgt["boxes"].clone()
  796. labels = tgt["labels"].clone()
  797. boxes = torch.clamp(boxes, 0, old_img_size)
  798. # rescale box
  799. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  800. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  801. # refine tgt
  802. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  803. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  804. keep = (min_tgt_size >= min_box_size)
  805. tgt["boxes"] = boxes[keep]
  806. tgt["labels"] = labels[keep]
  807. return images, targets, new_img_size
  808. # Trainer for DETR
  809. class DetrTrainer(object):
  810. def __init__(self, args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  811. # ------------------- basic parameters -------------------
  812. self.args = args
  813. self.epoch = 0
  814. self.best_map = -1.
  815. self.last_opt_step = 0
  816. self.no_aug_epoch = args.no_aug_epoch
  817. self.clip_grad = -1
  818. self.device = device
  819. self.criterion = criterion
  820. self.world_size = world_size
  821. self.second_stage = False
  822. self.heavy_eval = False
  823. self.optimizer_dict = {'optimizer': 'adamw', 'momentum': None, 'weight_decay': 1e-4, 'lr0': 0.001, 'backbone_lr_raio': 0.1}
  824. self.ema_dict = {'ema_decay': 0.9998, 'ema_tau': 2000}
  825. self.lr_schedule_dict = {'scheduler': 'linear', 'lrf': 0.01}
  826. self.warmup_dict = {'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1}
  827. # ---------------------------- Build Dataset & Model & Trans. Config ----------------------------
  828. self.data_cfg = data_cfg
  829. self.model_cfg = model_cfg
  830. self.trans_cfg = trans_cfg
  831. # ---------------------------- Build Transform ----------------------------
  832. self.train_transform, self.trans_cfg = build_transform(
  833. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  834. self.val_transform, _ = build_transform(
  835. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=False)
  836. # ---------------------------- Build Dataset & Dataloader ----------------------------
  837. self.dataset, self.dataset_info = build_dataset(self.args, self.data_cfg, self.trans_cfg, self.train_transform, is_train=True)
  838. self.train_loader = build_dataloader(self.args, self.dataset, self.args.batch_size // self.world_size, CollateFunc())
  839. # ---------------------------- Build Evaluator ----------------------------
  840. self.evaluator = build_evluator(self.args, self.data_cfg, self.val_transform, self.device)
  841. # ---------------------------- Build Grad. Scaler ----------------------------
  842. self.scaler = torch.cuda.amp.GradScaler(enabled=self.args.fp16)
  843. # ---------------------------- Build Optimizer ----------------------------
  844. self.optimizer_dict['lr0'] *= self.args.batch_size / 16.
  845. self.optimizer, self.start_epoch = build_detr_optimizer(self.optimizer_dict, model, self.args.resume)
  846. # ---------------------------- Build LR Scheduler ----------------------------
  847. self.lr_scheduler, self.lf = build_lr_scheduler(self.lr_schedule_dict, self.optimizer, self.args.max_epoch)
  848. self.lr_scheduler.last_epoch = self.start_epoch - 1 # do not move
  849. if self.args.resume:
  850. self.lr_scheduler.step()
  851. # ---------------------------- Build Model-EMA ----------------------------
  852. if self.args.ema and distributed_utils.get_rank() in [-1, 0]:
  853. print('Build ModelEMA ...')
  854. self.model_ema = ModelEMA(self.ema_dict, model, self.start_epoch * len(self.train_loader))
  855. else:
  856. self.model_ema = None
  857. def check_second_stage(self):
  858. # set second stage
  859. print('============== Second stage of Training ==============')
  860. self.second_stage = True
  861. # close mosaic augmentation
  862. if self.train_loader.dataset.mosaic_prob > 0.:
  863. print(' - Close < Mosaic Augmentation > ...')
  864. self.train_loader.dataset.mosaic_prob = 0.
  865. self.heavy_eval = True
  866. # close mixup augmentation
  867. if self.train_loader.dataset.mixup_prob > 0.:
  868. print(' - Close < Mixup Augmentation > ...')
  869. self.train_loader.dataset.mixup_prob = 0.
  870. self.heavy_eval = True
  871. # close rotation augmentation
  872. if 'degrees' in self.trans_cfg.keys() and self.trans_cfg['degrees'] > 0.0:
  873. print(' - Close < degress of rotation > ...')
  874. self.trans_cfg['degrees'] = 0.0
  875. if 'shear' in self.trans_cfg.keys() and self.trans_cfg['shear'] > 0.0:
  876. print(' - Close < shear of rotation >...')
  877. self.trans_cfg['shear'] = 0.0
  878. if 'perspective' in self.trans_cfg.keys() and self.trans_cfg['perspective'] > 0.0:
  879. print(' - Close < perspective of rotation > ...')
  880. self.trans_cfg['perspective'] = 0.0
  881. # build a new transform for second stage
  882. print(' - Rebuild transforms ...')
  883. self.train_transform, self.trans_cfg = build_transform(
  884. args=self.args, trans_config=self.trans_cfg, max_stride=self.model_cfg['max_stride'], is_train=True)
  885. self.train_loader.dataset.transform = self.train_transform
  886. def train(self, model):
  887. for epoch in range(self.start_epoch, self.args.max_epoch):
  888. if self.args.distributed:
  889. self.train_loader.batch_sampler.sampler.set_epoch(epoch)
  890. # check second stage
  891. if epoch >= (self.args.max_epoch - self.no_aug_epoch - 1) and not self.second_stage:
  892. self.check_second_stage()
  893. # train one epoch
  894. self.epoch = epoch
  895. self.train_one_epoch(model)
  896. # eval one epoch
  897. if self.heavy_eval:
  898. model_eval = model.module if self.args.distributed else model
  899. self.eval(model_eval)
  900. else:
  901. model_eval = model.module if self.args.distributed else model
  902. if (epoch % self.args.eval_epoch) == 0 or (epoch == self.args.max_epoch - 1):
  903. self.eval(model_eval)
  904. def eval(self, model):
  905. # chech model
  906. model_eval = model if self.model_ema is None else self.model_ema.ema
  907. # path to save model
  908. path_to_save = os.path.join(self.args.save_folder, self.args.dataset, self.args.model)
  909. os.makedirs(path_to_save, exist_ok=True)
  910. if distributed_utils.is_main_process():
  911. # check evaluator
  912. if self.evaluator is None:
  913. print('No evaluator ... save model and go on training.')
  914. print('Saving state, epoch: {}'.format(self.epoch + 1))
  915. weight_name = '{}_no_eval.pth'.format(self.args.model)
  916. checkpoint_path = os.path.join(path_to_save, weight_name)
  917. torch.save({'model': model_eval.state_dict(),
  918. 'mAP': -1.,
  919. 'optimizer': self.optimizer.state_dict(),
  920. 'epoch': self.epoch,
  921. 'args': self.args},
  922. checkpoint_path)
  923. else:
  924. print('eval ...')
  925. # set eval mode
  926. model_eval.trainable = False
  927. model_eval.eval()
  928. # evaluate
  929. with torch.no_grad():
  930. self.evaluator.evaluate(model_eval)
  931. # save model
  932. cur_map = self.evaluator.map
  933. if cur_map > self.best_map:
  934. # update best-map
  935. self.best_map = cur_map
  936. # save model
  937. print('Saving state, epoch:', self.epoch + 1)
  938. weight_name = '{}_best.pth'.format(self.args.model)
  939. checkpoint_path = os.path.join(path_to_save, weight_name)
  940. torch.save({'model': model_eval.state_dict(),
  941. 'mAP': round(self.best_map*100, 1),
  942. 'optimizer': self.optimizer.state_dict(),
  943. 'epoch': self.epoch,
  944. 'args': self.args},
  945. checkpoint_path)
  946. # set train mode.
  947. model_eval.trainable = True
  948. model_eval.train()
  949. if self.args.distributed:
  950. # wait for all processes to synchronize
  951. dist.barrier()
  952. def train_one_epoch(self, model):
  953. # basic parameters
  954. epoch_size = len(self.train_loader)
  955. img_size = self.args.img_size
  956. t0 = time.time()
  957. nw = epoch_size * self.args.wp_epoch
  958. # train one epoch
  959. for iter_i, (images, targets) in enumerate(self.train_loader):
  960. ni = iter_i + self.epoch * epoch_size
  961. # Warmup
  962. if ni <= nw:
  963. xi = [0, nw] # x interp
  964. for j, x in enumerate(self.optimizer.param_groups):
  965. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  966. x['lr'] = np.interp(
  967. ni, xi, [0.0, x['initial_lr'] * self.lf(self.epoch)])
  968. if 'momentum' in x:
  969. x['momentum'] = np.interp(ni, xi, [self.model_cfg['warmup_momentum'], self.model_cfg['momentum']])
  970. # To device
  971. images = images.to(self.device, non_blocking=True).float() / 255.
  972. # Multi scale
  973. if self.args.multi_scale:
  974. images, targets, img_size = self.rescale_image_targets(
  975. images, targets, self.model_cfg['stride'], self.args.min_box_size, self.model_cfg['multi_scale'])
  976. else:
  977. targets = self.refine_targets(targets, self.args.min_box_size, img_size)
  978. # Visualize targets
  979. if self.args.vis_tgt:
  980. vis_data(images*255, targets)
  981. # Inference
  982. with torch.cuda.amp.autocast(enabled=self.args.fp16):
  983. outputs = model(images)
  984. # Compute loss
  985. loss_dict = self.criterion(outputs=outputs, targets=targets, epoch=self.epoch)
  986. losses = loss_dict['losses']
  987. loss_dict_reduced = distributed_utils.reduce_dict(loss_dict)
  988. # Backward
  989. self.scaler.scale(losses).backward()
  990. # Optimize
  991. if self.clip_grad > 0:
  992. # unscale gradients
  993. self.scaler.unscale_(self.optimizer)
  994. # clip gradients
  995. torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=self.clip_grad)
  996. self.scaler.step(self.optimizer)
  997. self.scaler.update()
  998. self.optimizer.zero_grad()
  999. # Model EMA
  1000. if self.model_ema is not None:
  1001. self.model_ema.update(model)
  1002. self.last_opt_step = ni
  1003. # Log
  1004. if distributed_utils.is_main_process() and iter_i % 10 == 0:
  1005. t1 = time.time()
  1006. cur_lr = [param_group['lr'] for param_group in self.optimizer.param_groups]
  1007. # basic infor
  1008. log = '[Epoch: {}/{}]'.format(self.epoch+1, self.args.max_epoch)
  1009. log += '[Iter: {}/{}]'.format(iter_i, epoch_size)
  1010. log += '[lr: {:.6f}]'.format(cur_lr[0])
  1011. # loss infor
  1012. for k in loss_dict_reduced.keys():
  1013. if self.args.vis_aux_loss:
  1014. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1015. else:
  1016. if k in ['loss_cls', 'loss_bbox', 'loss_giou', 'losses']:
  1017. log += '[{}: {:.2f}]'.format(k, loss_dict_reduced[k])
  1018. # other infor
  1019. log += '[time: {:.2f}]'.format(t1 - t0)
  1020. log += '[size: {}]'.format(img_size)
  1021. # print log infor
  1022. print(log, flush=True)
  1023. t0 = time.time()
  1024. # LR Scheduler
  1025. self.lr_scheduler.step()
  1026. def refine_targets(self, targets, min_box_size, img_size):
  1027. # rescale targets
  1028. for tgt in targets:
  1029. boxes = tgt["boxes"]
  1030. labels = tgt["labels"]
  1031. # refine tgt
  1032. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1033. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1034. keep = (min_tgt_size >= min_box_size)
  1035. # xyxy -> cxcywh
  1036. new_boxes = torch.zeros_like(boxes)
  1037. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1038. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1039. # normalize
  1040. new_boxes /= img_size
  1041. del boxes
  1042. tgt["boxes"] = new_boxes[keep]
  1043. tgt["labels"] = labels[keep]
  1044. return targets
  1045. def rescale_image_targets(self, images, targets, stride, min_box_size, multi_scale_range=[0.5, 1.5]):
  1046. """
  1047. Deployed for Multi scale trick.
  1048. """
  1049. if isinstance(stride, int):
  1050. max_stride = stride
  1051. elif isinstance(stride, list):
  1052. max_stride = max(stride)
  1053. # During training phase, the shape of input image is square.
  1054. old_img_size = images.shape[-1]
  1055. new_img_size = random.randrange(old_img_size * multi_scale_range[0], old_img_size * multi_scale_range[1] + max_stride)
  1056. new_img_size = new_img_size // max_stride * max_stride # size
  1057. if new_img_size / old_img_size != 1:
  1058. # interpolate
  1059. images = torch.nn.functional.interpolate(
  1060. input=images,
  1061. size=new_img_size,
  1062. mode='bilinear',
  1063. align_corners=False)
  1064. # rescale targets
  1065. for tgt in targets:
  1066. boxes = tgt["boxes"].clone()
  1067. labels = tgt["labels"].clone()
  1068. boxes = torch.clamp(boxes, 0, old_img_size)
  1069. # rescale box
  1070. boxes[:, [0, 2]] = boxes[:, [0, 2]] / old_img_size * new_img_size
  1071. boxes[:, [1, 3]] = boxes[:, [1, 3]] / old_img_size * new_img_size
  1072. # refine tgt
  1073. tgt_boxes_wh = boxes[..., 2:] - boxes[..., :2]
  1074. min_tgt_size = torch.min(tgt_boxes_wh, dim=-1)[0]
  1075. keep = (min_tgt_size >= min_box_size)
  1076. # xyxy -> cxcywh
  1077. new_boxes = torch.zeros_like(boxes)
  1078. new_boxes[..., :2] = (boxes[..., 2:] + boxes[..., :2]) * 0.5
  1079. new_boxes[..., 2:] = (boxes[..., 2:] - boxes[..., :2])
  1080. # normalize
  1081. new_boxes /= new_img_size
  1082. del boxes
  1083. tgt["boxes"] = new_boxes[keep]
  1084. tgt["labels"] = labels[keep]
  1085. return images, targets, new_img_size
  1086. # Build Trainer
  1087. def build_trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size):
  1088. if model_cfg['trainer_type'] == 'yolov8':
  1089. return Yolov8Trainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1090. elif model_cfg['trainer_type'] == 'yolox':
  1091. return YoloxTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1092. elif model_cfg['trainer_type'] == 'rtmdet':
  1093. return RTMTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1094. elif model_cfg['trainer_type'] == 'detr':
  1095. return DetrTrainer(args, data_cfg, model_cfg, trans_cfg, device, model, criterion, world_size)
  1096. else:
  1097. raise NotImplementedError