| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- try:
- from .basic_modules.basic import LayerNorm2D
- from .basic_modules.transformer import GlobalDecoder
- except:
- from basic_modules.basic import LayerNorm2D
- from basic_modules.transformer import GlobalDecoder
- def build_transformer(cfg, return_intermediate=False):
- if cfg['transformer'] == 'plain_detr_transformer':
- return PlainDETRTransformer(d_model = cfg['hidden_dim'],
- num_heads = cfg['de_num_heads'],
- mlp_ratio = cfg['de_mlp_ratio'],
- dropout = cfg['de_dropout'],
- act_type = cfg['de_act'],
- pre_norm = cfg['de_pre_norm'],
- rpe_hidden_dim = cfg['rpe_hidden_dim'],
- feature_stride = cfg['out_stride'],
- num_layers = cfg['de_num_layers'],
- return_intermediate = return_intermediate,
- use_checkpoint = cfg['use_checkpoint'],
- num_queries_one2one = cfg['num_queries_one2one'],
- num_queries_one2many = cfg['num_queries_one2many'],
- proposal_feature_levels = cfg['proposal_feature_levels'],
- proposal_in_stride = cfg['out_stride'],
- proposal_tgt_strides = cfg['proposal_tgt_strides'],
- )
- # ----------------- Dencoder for Detection task -----------------
- ## PlainDETR's Transformer for Detection task
- class PlainDETRTransformer(nn.Module):
- def __init__(self,
- # Decoder layer params
- d_model :int = 256,
- num_heads :int = 8,
- mlp_ratio :float = 4.0,
- dropout :float = 0.1,
- act_type :str = "relu",
- pre_norm :bool = False,
- rpe_hidden_dim :int = 512,
- feature_stride :int = 16,
- num_layers :int = 6,
- # Decoder params
- return_intermediate :bool = False,
- use_checkpoint :bool = False,
- num_queries_one2one :int = 300,
- num_queries_one2many :int = 1500,
- proposal_feature_levels :int = 3,
- proposal_in_stride :int = 16,
- proposal_tgt_strides :int = [8, 16, 32],
- ):
- super().__init__()
- # ------------ Basic setting ------------
- ## Model
- self.d_model = d_model
- self.num_heads = num_heads
- self.rpe_hidden_dim = rpe_hidden_dim
- self.mlp_ratio = mlp_ratio
- self.act_type = act_type
- self.num_layers = num_layers
- self.return_intermediate = return_intermediate
- ## Trick
- self.use_checkpoint = use_checkpoint
- self.num_queries_one2one = num_queries_one2one
- self.num_queries_one2many = num_queries_one2many
- self.proposal_feature_levels = proposal_feature_levels
- self.proposal_tgt_strides = proposal_tgt_strides
- self.proposal_in_stride = proposal_in_stride
- self.proposal_min_size = 50
- # --------------- Network setting ---------------
- ## Global Decoder
- self.decoder = GlobalDecoder(d_model, num_heads, mlp_ratio, dropout, act_type, pre_norm,
- rpe_hidden_dim, feature_stride, num_layers, return_intermediate,
- use_checkpoint,)
-
- ## Two stage
- self.enc_output = nn.Linear(d_model, d_model)
- self.enc_output_norm = nn.LayerNorm(d_model)
- self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
- self.pos_trans_norm = nn.LayerNorm(d_model * 2)
- ## Expand layers
- if proposal_feature_levels > 1:
- assert len(proposal_tgt_strides) == proposal_feature_levels
- self.enc_output_proj = nn.ModuleList([])
- for stride in proposal_tgt_strides:
- if stride == proposal_in_stride:
- self.enc_output_proj.append(nn.Identity())
- elif stride > proposal_in_stride:
- scale = int(math.log2(stride / proposal_in_stride))
- layers = []
- for _ in range(scale - 1):
- layers += [
- nn.Conv2d(d_model, d_model, kernel_size=2, stride=2),
- LayerNorm2D(d_model),
- nn.GELU()
- ]
- layers.append(nn.Conv2d(d_model, d_model, kernel_size=2, stride=2))
- self.enc_output_proj.append(nn.Sequential(*layers))
- else:
- scale = int(math.log2(proposal_in_stride / stride))
- layers = []
- for _ in range(scale - 1):
- layers += [
- nn.ConvTranspose2d(d_model, d_model, kernel_size=2, stride=2),
- LayerNorm2D(d_model),
- nn.GELU()
- ]
- layers.append(nn.ConvTranspose2d(d_model, d_model, kernel_size=2, stride=2))
- self.enc_output_proj.append(nn.Sequential(*layers))
- self._reset_parameters()
- def _reset_parameters(self):
- for p in self.parameters():
- if p.dim() > 1:
- nn.init.xavier_uniform_(p)
- if hasattr(self.decoder, '_reset_parameters'):
- print('decoder re-init')
- self.decoder._reset_parameters()
- def get_proposal_pos_embed(self, proposals):
- num_pos_feats = self.d_model // 2
- temperature = 10000
- scale = 2 * torch.pi
- dim_t = torch.arange(
- num_pos_feats, dtype=torch.float32, device=proposals.device
- )
- dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
- # N, L, 4
- proposals = proposals * scale
- # N, L, 4, 128
- pos = proposals[:, :, :, None] / dim_t
- # N, L, 4, 64, 2
- pos = torch.stack(
- (pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4
- ).flatten(2)
- return pos
- def get_valid_ratio(self, mask):
- _, H, W = mask.shape
- valid_H = torch.sum(~mask[:, :, 0], 1)
- valid_W = torch.sum(~mask[:, 0, :], 1)
- valid_ratio_h = valid_H.float() / H
- valid_ratio_w = valid_W.float() / W
- valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
- return valid_ratio
- def expand_encoder_output(self, memory, memory_padding_mask, spatial_shapes):
- assert spatial_shapes.size(0) == 1, f'Get encoder output of shape {spatial_shapes}, not sure how to expand'
- bs, _, c = memory.shape
- h, w = spatial_shapes[0]
- _out_memory = memory.view(bs, h, w, c).permute(0, 3, 1, 2)
- _out_memory_padding_mask = memory_padding_mask.view(bs, h, w)
- out_memory, out_memory_padding_mask, out_spatial_shapes = [], [], []
- for i in range(self.proposal_feature_levels):
- mem = self.enc_output_proj[i](_out_memory)
- mask = F.interpolate(
- _out_memory_padding_mask[None].float(), size=mem.shape[-2:]
- ).to(torch.bool)
- out_memory.append(mem)
- out_memory_padding_mask.append(mask.squeeze(0))
- out_spatial_shapes.append(mem.shape[-2:])
- out_memory = torch.cat([mem.flatten(2).transpose(1, 2) for mem in out_memory], dim=1)
- out_memory_padding_mask = torch.cat([mask.flatten(1) for mask in out_memory_padding_mask], dim=1)
- out_spatial_shapes = torch.as_tensor(out_spatial_shapes, dtype=torch.long, device=out_memory.device)
-
- return out_memory, out_memory_padding_mask, out_spatial_shapes
- def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
- if self.proposal_feature_levels > 1:
- memory, memory_padding_mask, spatial_shapes = self.expand_encoder_output(
- memory, memory_padding_mask, spatial_shapes
- )
- N_, S_, C_ = memory.shape
- # base_scale = 4.0
- proposals = []
- _cur = 0
- for lvl, (H_, W_) in enumerate(spatial_shapes):
- stride = self.proposal_tgt_strides[lvl]
- grid_y, grid_x = torch.meshgrid(
- torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
- torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
- )
- grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
- grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) * stride
- wh = torch.ones_like(grid) * self.proposal_min_size * (2.0 ** lvl)
- proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
- proposals.append(proposal)
- _cur += H_ * W_
- output_proposals = torch.cat(proposals, 1)
- H_, W_ = spatial_shapes[0]
- stride = self.proposal_tgt_strides[0]
- mask_flatten_ = memory_padding_mask[:, :H_*W_].view(N_, H_, W_, 1)
- valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1, keepdim=True) * stride
- valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1, keepdim=True) * stride
- img_size = torch.cat([valid_W, valid_H, valid_W, valid_H], dim=-1)
- img_size = img_size.unsqueeze(1) # [BS, 1, 4]
- output_proposals_valid = (
- (output_proposals > 0.01 * img_size) & (output_proposals < 0.99 * img_size)
- ).all(-1, keepdim=True)
- output_proposals = output_proposals.masked_fill(
- memory_padding_mask.unsqueeze(-1).repeat(1, 1, 1),
- max(H_, W_) * stride,
- )
- output_proposals = output_proposals.masked_fill(
- ~output_proposals_valid,
- max(H_, W_) * stride,
- )
- output_memory = memory
- output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
- output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
- output_memory = self.enc_output_norm(self.enc_output(output_memory))
- max_shape = (valid_H[:, None, :], valid_W[:, None, :])
- return output_memory, output_proposals, max_shape
-
- def get_reference_points(self, memory, mask_flatten, spatial_shapes):
- output_memory, output_proposals, max_shape = self.gen_encoder_output_proposals(
- memory, mask_flatten, spatial_shapes
- )
- # hack implementation for two-stage Deformable DETR
- enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
- enc_outputs_delta = self.decoder.bbox_embed[self.decoder.num_layers](output_memory)
- enc_outputs_coord_unact = self.decoder.box_xyxy_to_cxcywh(self.decoder.delta2bbox(
- output_proposals,
- enc_outputs_delta,
- max_shape
- ))
- topk = self.two_stage_num_proposals
- topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
- topk_coords_unact = torch.gather(
- enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
- )
- topk_coords_unact = topk_coords_unact.detach()
- reference_points = topk_coords_unact
-
- return (reference_points, max_shape, enc_outputs_class,
- enc_outputs_coord_unact, enc_outputs_delta, output_proposals)
- def forward(self, src, mask, pos_embed, query_embed=None, self_attn_mask=None):
- # Prepare input for encoder
- bs, c, h, w = src.shape
- src_flatten = src.flatten(2).transpose(1, 2)
- mask_flatten = mask.flatten(1)
- pos_embed_flatten = pos_embed.flatten(2).transpose(1, 2)
- spatial_shapes = torch.as_tensor([(h, w)], dtype=torch.long, device=src_flatten.device)
- # Prepare input for decoder
- memory = src_flatten
- bs, seq_l, c = memory.shape
- # Two stage trick
- if self.training:
- self.two_stage_num_proposals = self.num_queries_one2one + self.num_queries_one2many
- else:
- self.two_stage_num_proposals = self.num_queries_one2one
- (reference_points, max_shape, enc_outputs_class,
- enc_outputs_coord_unact, enc_outputs_delta, output_proposals) \
- = self.get_reference_points(memory, mask_flatten, spatial_shapes)
- init_reference_out = reference_points
- pos_trans_out = torch.zeros((bs, self.two_stage_num_proposals, 2*c), device=init_reference_out.device)
- pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(reference_points)))
- # Mixed selection trick
- tgt = query_embed.unsqueeze(0).expand(bs, -1, -1)
- query_embed, _ = torch.split(pos_trans_out, c, dim=2)
- # Decoder
- hs, inter_references = self.decoder(tgt,
- reference_points,
- memory,
- pos_embed_flatten,
- spatial_shapes,
- query_embed,
- mask_flatten,
- self_attn_mask,
- max_shape
- )
- inter_references_out = inter_references
- return (hs,
- init_reference_out,
- inter_references_out,
- enc_outputs_class,
- enc_outputs_coord_unact,
- enc_outputs_delta,
- output_proposals,
- max_shape
- )
- # ----------------- Dencoder for Segmentation task -----------------
- ## PlainDETR's Transformer for Segmentation task
- class SegTransformerDecoder(nn.Module):
- def __init__(self, ):
- super().__init__()
- # TODO: design seg-decoder
- def forward(self, x):
- return
- # ----------------- Dencoder for Pose estimation task -----------------
- ## PlainDETR's Transformer for Pose estimation task
- class PosTransformerDecoder(nn.Module):
- def __init__(self, ):
- super().__init__()
- # TODO: design seg-decoder
- def forward(self, x):
- return
- if __name__ == '__main__':
- import time
- from thop import profile
- from basic_modules.basic import MLP
- from basic_modules.transformer import get_clones
- cfg = {
- 'out_stride': 16,
- # Transformer Decoder
- 'transformer': 'plain_detr_transformer',
- 'hidden_dim': 256,
- 'num_queries': 300,
- 'de_num_heads': 8,
- 'de_num_layers': 6,
- 'de_mlp_ratio': 4.0,
- 'de_dropout': 0.1,
- 'de_act': 'gelu',
- 'de_pre_norm': True,
- 'rpe_hidden_dim': 512,
- 'use_checkpoint': False,
- 'proposal_feature_levels': 3,
- 'proposal_tgt_strides': [8, 16, 32],
- }
- feat = torch.randn(1, cfg['hidden_dim'], 40, 40)
- mask = torch.zeros(1, 40, 40)
- pos_embed = torch.randn(1, cfg['hidden_dim'], 40, 40)
- query_embed = torch.randn(cfg['num_queries'], cfg['hidden_dim'])
- model = build_transformer(cfg, True)
- class_embed = nn.Linear(cfg['hidden_dim'], 80)
- bbox_embed = MLP(cfg['hidden_dim'], cfg['hidden_dim'], 4, 3)
- class_embed = get_clones(class_embed, cfg['de_num_layers'] + 1)
- bbox_embed = get_clones(bbox_embed, cfg['de_num_layers'] + 1)
- model.decoder.bbox_embed = bbox_embed
- model.decoder.class_embed = class_embed
- model.train()
- t0 = time.time()
- outputs = model(feat, mask, pos_embed, query_embed)
- (hs,
- init_reference_out,
- inter_references_out,
- enc_outputs_class,
- enc_outputs_coord_unact,
- enc_outputs_delta,
- output_proposals,
- max_shape
- ) = outputs
- t1 = time.time()
- print('Time: ', t1 - t0)
- print(hs.shape)
- print(init_reference_out.shape)
- print(inter_references_out.shape)
- print(enc_outputs_class.shape)
- print(enc_outputs_coord_unact.shape)
- print(enc_outputs_delta.shape)
- print(output_proposals.shape)
- print('==============================')
- model.eval()
- flops, params = profile(model, inputs=(feat, mask, pos_embed, query_embed, ), verbose=False)
- print('==============================')
- print('GFLOPs : {:.2f}'.format(flops / 1e9 * 2))
- print('Params : {:.2f} M'.format(params / 1e6))
|